
SESSION 4 

Programming Languages for Objects 

 Black Boxes  
 Static Subroutines and Static Variables  
 Parameters  
 Return Values  
 APIs, Packages, and Javadoc  
 More on Program Design  
 The Truth About Declarations  

 

Black Boxes 

 

A SUBROUTINE CONSISTS OF INSTRUCTIONS for performing some task, chunked 

together and given a name. "Chunking" allows you to deal with a potentially very complicated 

task as a single concept. Instead of worrying about the many, many steps that the computer might 

have to go though to perform that task, you just need to remember the name of the subroutine. 

Whenever you want your program to perform the task, you just call the subroutine. Subroutines 

are a major tool for dealing with complexity. 

A subroutine is sometimes said to be a "black box" because you can't see what's "inside" it (or, to 

be more precise, you usually don't want to see inside it, because then you would have to deal 

with all the complexity that the subroutine is meant to hide). Of course, a black box that has no 

way of interacting with the rest of the world would be pretty useless. A black box needs some 

kind of interface with the rest of the world, which allows some interaction between what's inside 

the box and what's outside. A physical black box might have buttons on the outside that you can 

push, dials that you can set, and slots that can be used for passing information back and forth. 

Since we are trying to hide complexity, not create it, we have the first rule of black boxes: 

The interface of a black box should be fairly straightforward, well-defined, and easy to 

understand.  

Are there any examples of black boxes in the real world? Yes; in fact, you are surrounded by 

them. Your television, your car, your mobile phone, your refrigerator.... You can turn your 

television on and off, change channels, and set the volume by using elements of the television's 

interface -- dials, remote control, don't forget to plug in the power -- without understanding 

anything about how the thing actually works. The same goes for a mobile phone, although the 

interface in that case is a lot more complicated. 

http://math.hws.edu/javanotes/c4/s1.html
http://math.hws.edu/javanotes/c4/s2.html
http://math.hws.edu/javanotes/c4/s3.html
http://math.hws.edu/javanotes/c4/s4.html
http://math.hws.edu/javanotes/c4/s5.html
http://math.hws.edu/javanotes/c4/s6.html
http://math.hws.edu/javanotes/c4/s7.html


Now, a black box does have an inside -- the code in a subroutine that actually performs the task, 

or all the electronics inside your television set. The inside of a black box is called its 

implementation. The second rule of black boxes is that: 

To use a black box, you shouldn't need to know anything about its implementation; all you 

need to know is its interface.  

In fact, it should be possible to change the implementation, as long as the behavior of the box, as 

seen from the outside, remains unchanged. For example, when the insides of TV sets went from 

using vacuum tubes to using transistors, the users of the sets didn't need to know about it -- or 

even know what it means. Similarly, it should be possible to rewrite the inside of a subroutine, to 

use more efficient code, for example, without affecting the programs that use that subroutine. 

Of course, to have a black box, someone must have designed and built the implementation in the 

first place. The black box idea works to the advantage of the implementor as well as the user of 

the black box. After all, the black box might be used in an unlimited number of different 

situations. The implementor of the black box doesn't need to know about any of that. The 

implementor just needs to make sure that the box performs its assigned task and interfaces 

correctly with the rest of the world. This is the third rule of black boxes: 

The implementor of a black box should not need to know anything about the larger systems 

in which the box will be used.  

In a way, a black box divides the world into two parts: the inside (implementation) and the 

outside. The interface is at the boundary, connecting those two parts. 

 

By the way, you should not think of an interface as just the physical connection between the box 

and the rest of the world. The interface also includes a specification of what the box does and 

how it can be controlled by using the elements of the physical interface. It's not enough to say 

that a TV set has a power switch; you need to specify that the power switch is used to turn the 

TV on and off! 

To put this in computer science terms, the interface of a subroutine has a semantic as well as a 

syntactic component. The syntactic part of the interface tells you just what you have to type in 

order to call the subroutine. The semantic component specifies exactly what task the subroutine 

will accomplish. To write a legal program, you need to know the syntactic specification of the 

subroutine. To understand the purpose of the subroutine and to use it effectively, you need to 

know the subroutine's semantic specification. I will refer to both parts of the interface -- syntactic 

and semantic -- collectively as the contract of the subroutine. 

The contract of a subroutine says, essentially, "Here is what you have to do to use me, and here 

is what I will do for you, guaranteed." When you write a subroutine, the comments that you write 

for the subroutine should make the contract very clear. (I should admit that in practice, 



subroutines' contracts are often inadequately specified, much to the regret and annoyance of the 

programmers who have to use them.) 

For the rest of this chapter, I turn from general ideas about black boxes and subroutines in 

general to the specifics of writing and using subroutines in Java. But keep the general ideas and 

principles in mind. They are the reasons that subroutines exist in the first place, and they are your 

guidelines for using them. This should be especially clear in Section 4.6, where I will discuss 

subroutines as a tool in program development. 

 

You should keep in mind that subroutines are not the only example of black boxes in 

programming. For example, a class is also a black box. We'll see that a class can have a "public" 

part, representing its interface, and a "private" part that is entirely inside its hidden 

implementation. All the principles of black boxes apply to classes as well as to subroutines 

Static Subroutines and Static Variables 

 

EVERY SUBROUTINE IN JAVA must be defined inside some class. This makes Java rather 

unusual among programming languages, since most languages allow free-floating, independent 

subroutines. One purpose of a class is to group together related subroutines and variables. 

Perhaps the designers of Java felt that everything must be related to something. As a less 

philosophical motivation, Java's designers wanted to place firm controls on the ways things are 

named, since a Java program potentially has access to a huge number of subroutines created by 

many different programmers. The fact that those subroutines are grouped into named classes 

(and classes are grouped into named "packages," as we will see later) helps control the confusion 

that might result from so many different names. 

There is a basic distinction in Java between static and non-static subroutines. A class definition 

can contain the source code for both types of subroutine, but what's done with them when the 

program runs is very different. Static subroutines are easier to understand: In a running program, 

a static subroutine is a member of the class itself. Non-static subroutine definitions, on the other 

hand, are only there to be used when objects are created, and the subroutines themselves become 

members of the objects. Non-static subroutines only become relevant when you are working with 

objects. The distinction between static and non-static also applies to variables and to other things 

that can occur in class definitions. This chapter will deal with static subroutines and static 

variables almost exclusively. We'll turn to non-static stuff and to object-oriented programming in 

the next chapter. 

A subroutine that is in a class or object is often called a method, and "method" is the term that 

most people prefer for subroutines in Java. I will start using the term "method" occasionally; 

however, I will continue to prefer the more general term "subroutine" in this chapter, at least for 

static subroutines. However, you should start thinking of the terms "method" and "subroutine" as 

being essentially synonymous as far as Java is concerned. 

http://math.hws.edu/javanotes/c4/s6.html
http://math.hws.edu/javanotes/c5/index.html


 

4.2.1  Subroutine Definitions  

A subroutine must be defined somewhere. The definition has to include the name of the 

subroutine, enough information to make it possible to call the subroutine, and the code that will 

be executed each time the subroutine is called. A subroutine definition in Java takes the form: 

modifiers  return-type  subroutine-name  ( parameter-list ) { 

    statements 

} 

It will take us a while -- most of the chapter -- to get through what all this means in detail. Of 

course, you've already seen examples of subroutines in previous chapters, such as the main() 

routine of a program and the drawFrame() routine of the animation programs in Section 3.9. 

So you are familiar with the general format. 

The statements between the braces, { and }, in a subroutine definition make up the body of the 

subroutine. These statements are the inside, or implementation part, of the "black box," as 

discussed in the previous section. They are the instructions that the computer executes when the 

method is called. Subroutines can contain any of the statements discussed in Chapter 2 and 

Chapter 3. 

The modifiers that can occur at the beginning of a subroutine definition are words that set 

certain characteristics of the subroutine, such as whether it is static or not. The modifiers that 

you've seen so far are "static" and "public". There are only about a half-dozen possible 

modifiers altogether. 

If the subroutine is a function, whose job is to compute some value, then the return-type is used 

to specify the type of value that is returned by the function. It can be a type name such as String 

or int or even an array type such as double[]. We'll be looking at functions and return types in 

some detail in Section 4.4. If the subroutine is not a function, then the return-type is replaced by 

the special value void, which indicates that no value is returned. The term "void" is meant to 

indicate that the return value is empty or non-existent. 

Finally, we come to the parameter-list of the method. Parameters are part of the interface of a 

subroutine. They represent information that is passed into the subroutine from outside, to be used 

by the subroutine's internal computations. For a concrete example, imagine a class named 

Television that includes a method named changeChannel(). The immediate question is: 

What channel should it change to? A parameter can be used to answer this question. Since the 

channel number is an integer, the type of the parameter would be int, and the declaration of the 

changeChannel() method might look like 

public void changeChannel(int channelNum) { ... } 

http://math.hws.edu/javanotes/c3/s9.html
http://math.hws.edu/javanotes/c4/s1.html
http://math.hws.edu/javanotes/c2/index.html
http://math.hws.edu/javanotes/c3/index.html
http://math.hws.edu/javanotes/c4/s4.html


This declaration specifies that changeChannel() has a parameter named channelNum of 

type int. However, channelNum does not yet have any particular value. A value for 

channelNum is provided when the subroutine is called; for example: 
changeChannel(17);  

The parameter list in a subroutine can be empty, or it can consist of one or more parameter 

declarations of the form type parameter-name. If there are several declarations, they are 

separated by commas. Note that each declaration can name only one parameter. For example, if 

you want two parameters of type double, you have to say "double x, double y", rather 

than "double x, y". 

Parameters are covered in more detail in the next section. 

Here are a few examples of subroutine definitions, leaving out the statements that define what 

the subroutines do: 

public static void playGame() { 

    // "public" and "static" are modifiers; "void" is the  

    // return-type; "playGame" is the subroutine-name;  

    // the parameter-list is empty. 

    . . .  // Statements that define what playGame does go here. 

} 

 

int getNextN(int N) { 

    // There are no modifiers; "int" in the return-type; 

    // "getNextN" is the subroutine-name; the parameter-list  

    // includes one parameter whose name is "N" and whose  

    // type is "int". 

    . . .  // Statements that define what getNextN does go here. 

} 

 

static boolean lessThan(double x, double y) { 

    // "static" is a modifier; "boolean" is the 

    // return-type; "lessThan" is the subroutine-name;  

    // the parameter-list includes two parameters whose names are  

    // "x" and "y", and the type of each of these parameters  

    // is "double". 

    . . .  // Statements that define what lessThan does go here. 

} 

In the second example given here, getNextN is a non-static method, since its definition does 

not include the modifier "static" -- and so it's not an example that we should be looking at in 

this chapter! The other modifier shown in the examples is "public". This modifier indicates 

that the method can be called from anywhere in a program, even from outside the class where the 

method is defined. There is another modifier, "private", which indicates that the method can 

be called only from inside the same class. The modifiers public and private are called 

access specifiers. If no access specifier is given for a method, then by default, that method can be 

called from anywhere in the "package" that contains the class, but not from outside that package. 

(Packages were mentioned in Subsection 2.6.6, and you'll learn more about them later in this 

http://math.hws.edu/javanotes/c4/s3.html
http://math.hws.edu/javanotes/c2/s6.html#basics.6.6


chapter, in Section 4.5.) There is one other access modifier, protected, which will only 

become relevant when we turn to object-oriented programming in Chapter 5. 

Note, by the way, that the main() routine of a program follows the usual syntax rules for a 

subroutine. In 

public static void main(String[] args) { ... } 

the modifiers are public and static, the return type is void, the subroutine name is main, 

and the parameter list is "String[] args". In this case, the type for the parameter is the array 

type String[]. 

You've already had some experience with filling in the implementation of a subroutine. In this 

chapter, you'll learn all about writing your own complete subroutine definitions, including the 

interface part. 

 

4.2.2  Calling Subroutines  

When you define a subroutine, all you are doing is telling the computer that the subroutine exists 

and what it does. The subroutine doesn't actually get executed until it is called. (This is true even 

for the main() routine in a class -- even though you don't call it, it is called by the system when 

the system runs your program.) For example, the playGame() method given as an example 

above could be called using the following subroutine call statement: 

playGame(); 

This statement could occur anywhere in the same class that includes the definition of 

playGame(), whether in a main() method or in some other subroutine. Since playGame() 

is a public method, it can also be called from other classes, but in that case, you have to tell 

the computer which class it comes from. Since playGame() is a static method, its full 

name includes the name of the class in which it is defined. Let's say, for example, that 

playGame() is defined in a class named Poker. Then to call playGame() from outside the 

Poker class, you would have to say 

Poker.playGame(); 

The use of the class name here tells the computer which class to look in to find the method. It 

also lets you distinguish between Poker.playGame() and other potential playGame() 

methods defined in other classes, such as Roulette.playGame() or 

Blackjack.playGame(). 

More generally, a subroutine call statement for a static subroutine takes the form 

subroutine-name(parameters); 

http://math.hws.edu/javanotes/c4/s5.html
http://math.hws.edu/javanotes/c5/index.html


if the subroutine that is being called is in the same class, or 

class-name.subroutine-name(parameters); 

if the subroutine is defined elsewhere, in a different class. (Non-static methods belong to objects 

rather than classes, and they are called using objects instead of class names. More on that later.) 

Note that the parameter list can be empty, as in the playGame() example, but the parentheses 

must be there even if there is nothing between them. The number of parameters that you provide 

when you call a subroutine must match the number listed in the parameter list in the subroutine 

definition, and the types of the parameters in the call statement must match the types in the 

subroutine definition. 

 

4.2.3  Subroutines in Programs  

It's time to give an example of what a complete program looks like, when it includes other 

subroutines in addition to the main() routine. Let's write a program that plays a guessing game 

with the user. The computer will choose a random number between 1 and 100, and the user will 

try to guess it. The computer tells the user whether the guess is high or low or correct. If the user 

gets the number after six guesses or fewer, the user wins the game. After each game, the user has 

the option of continuing with another game. 

Since playing one game can be thought of as a single, coherent task, it makes sense to write a 

subroutine that will play one guessing game with the user. The main() routine will use a loop 

to call the playGame() subroutine over and over, as many times as the user wants to play. We 

approach the problem of designing the playGame() subroutine the same way we write a 

main() routine: Start with an outline of the algorithm and apply stepwise refinement. Here is a 

short pseudocode algorithm for a guessing game routine: 

Pick a random number 

while the game is not over: 

    Get the user's guess 

    Tell the user whether the guess is high, low, or correct. 

The test for whether the game is over is complicated, since the game ends if either the user 

makes a correct guess or the number of guesses is six. As in many cases, the easiest thing to do is 

to use a "while (true)" loop and use break to end the loop whenever we find a reason to 

do so. Also, if we are going to end the game after six guesses, we'll have to keep track of the 

number of guesses that the user has made. Filling out the algorithm gives: 

Let computersNumber be a random number between 1 and 100 

Let guessCount = 0 

while (true): 

    Get the user's guess 

    Count the guess by adding 1 to guess count 

    if the user's guess equals computersNumber: 

        Tell the user he won 



        break out of the loop 

    if the number of guesses is 6: 

        Tell the user he lost 

        break out of the loop 

    if the user's guess is less than computersNumber: 

        Tell the user the guess was low 

    else if the user's guess is higher than computersNumber: 

        Tell the user the guess was high 

With variable declarations added and translated into Java, this becomes the definition of the 

playGame() routine. A random integer between 1 and 100 can be computed as 

(int)(100 * Math.random()) + 1. I've cleaned up the interaction with the user to 

make it flow better. 

static void playGame() { 

    int computersNumber; // A random number picked by the computer. 

    int usersGuess;      // A number entered by user as a guess. 

    int guessCount;      // Number of guesses the user has made. 

    computersNumber = (int)(100 * Math.random()) + 1; 

             // The value assigned to computersNumber is a randomly 

             //    chosen integer between 1 and 100, inclusive. 

    guessCount = 0; 

    System.out.println(); 

    System.out.print("What is your first guess? "); 

    while (true) { 

       usersGuess = TextIO.getInt();  // Get the user's guess. 

       guessCount++; 

       if (usersGuess == computersNumber) { 

          System.out.println("You got it in " + guessCount 

                  + " guesses!  My number was " + computersNumber); 

          break;  // The game is over; the user has won. 

       } 

       if (guessCount == 6) { 

          System.out.println("You didn't get the number in 6 

guesses."); 

          System.out.println("You lose.  My number was " + 

computersNumber); 

          break;  // The game is over; the user has lost. 

       } 

       // If we get to this point, the game continues. 

       // Tell the user if the guess was too high or too low. 

       if (usersGuess < computersNumber) 

          System.out.print("That's too low.  Try again: "); 

       else if (usersGuess > computersNumber) 

          System.out.print("That's too high.  Try again: "); 

    } 

    System.out.println(); 

} // end of playGame() 

Now, where exactly should you put this? It should be part of the same class as the main() 

routine, but not inside the main routine. It is not legal to have one subroutine physically nested 

inside another. The main() routine will call playGame(), but not contain its definition, only 

a call statement. You can put the definition of playGame() either before or after the main() 

routine. Java is not very picky about having the members of a class in any particular order. 



It's pretty easy to write the main routine. You've done things like this before. Here's what the 

complete program looks like (except that a serious program needs more comments than I've 

included here). 

public class GuessingGame { 

 

   public static void main(String[] args) { 

      System.out.println("Let's play a game.  I'll pick a number 

between"); 

      System.out.println("1 and 100, and you try to guess it."); 

      boolean playAgain; 

      do { 

         playGame();  // call subroutine to play one game 

         System.out.print("Would you like to play again? "); 

         playAgain = TextIO.getlnBoolean(); 

      } while (playAgain); 

      System.out.println("Thanks for playing.  Goodbye."); 

   } // end of main()             

    

   static void playGame() { 

       int computersNumber; // A random number picked by the 

computer. 

       int usersGuess;      // A number entered by user as a guess. 

       int guessCount;      // Number of guesses the user has made. 

       computersNumber = (int)(100 * Math.random()) + 1; 

                // The value assigned to computersNumber is a 

randomly 

                //    chosen integer between 1 and 100, inclusive. 

       guessCount = 0; 

       System.out.println(); 

       System.out.print("What is your first guess? "); 

       while (true) { 

          usersGuess = TextIO.getInt();  // Get the user's guess. 

          guessCount++; 

          if (usersGuess == computersNumber) { 

             System.out.println("You got it in " + guessCount 

                     + " guesses!  My number was " + 

computersNumber); 

             break;  // The game is over; the user has won. 

          } 

          if (guessCount == 6) { 

             System.out.println("You didn't get the number in 6 

guesses."); 

             System.out.println("You lose.  My number was " + 

computersNumber); 

             break;  // The game is over; the user has lost. 

          } 

          // If we get to this point, the game continues. 

          // Tell the user if the guess was too high or too low. 

          if (usersGuess < computersNumber) 

             System.out.print("That's too low.  Try again: "); 

          else if (usersGuess > computersNumber) 

             System.out.print("That's too high.  Try again: "); 

       } 

       System.out.println(); 

   } // end of playGame() 



                

} // end of class GuessingGame 

Take some time to read the program carefully and figure out how it works. And try to convince 

yourself that even in this relatively simple case, breaking up the program into two methods 

makes the program easier to understand and probably made it easier to write each piece. 

 

4.2.4  Member Variables  

A class can include other things besides subroutines. In particular, it can also include variable 

declarations. Of course, you can declare variables inside subroutines. Those are called local 

variables. However, you can also have variables that are not part of any subroutine. To 

distinguish such variables from local variables, we call them member variables, since they are 

members of a class. Another term for them is global variable. 

Just as with subroutines, member variables can be either static or non-static. In this chapter, we'll 

stick to static variables. A static member variable belongs to the class as a whole, and it exists as 

long as the class exists. Memory is allocated for the variable when the class is first loaded by the 

Java interpreter. Any assignment statement that assigns a value to the variable changes the 

content of that memory, no matter where that assignment statement is located in the program. 

Any time the variable is used in an expression, the value is fetched from that same memory, no 

matter where the expression is located in the program. This means that the value of a static 

member variable can be set in one subroutine and used in another subroutine. Static member 

variables are "shared" by all the static subroutines in the class. A local variable in a subroutine, 

on the other hand, exists only while that subroutine is being executed, and is completely 

inaccessible from outside that one subroutine. 

The declaration of a member variable looks just like the declaration of a local variable except for 

two things: The member variable is declared outside any subroutine (although it still has to be 

inside a class), and the declaration can be marked with modifiers such as static, public, and 

private. Since we are only working with static member variables for now, every declaration 

of a member variable in this chapter will include the modifier static. They might also be 

marked as public or private. For example: 

static String usersName; 

public static int numberOfPlayers; 

private static double velocity, time; 

A static member variable that is not declared to be private can be accessed from outside the 

class where it is defined, as well as inside. When it is used in some other class, it must be 

referred to with a compound identifier of the form class-name.variable-name. For example, the 

System class contains the public static member variable named out, and you use this variable in 

your own classes by referring to System.out. Similarly, Math.PI is a public static member 

variable in the Math. If numberOfPlayers is a public static member variable in a class 



named Poker, then code in the Poker class would refer to it simply as numberOfPlayers, 

while code in another class would refer to it as Poker.numberOfPlayers. 

As an example, let's add a couple static member variable to the GuessingGame class that we 

wrote earlier in this section. We add a variable named gamesPlayed to keep track of how 

many games the user has played and another variable named gamesWon to keep track of the 

number of games that the user has won. The variables are declared as static member variables: 

static int gamesPlayed; 

static int gamesWon; 

In the playGame() routine, we always add 1 to gamesPlayed, and we add 1 to gamesWon 

if the user wins the game. At the end of the main() routine, we print out the values of both 

variables. It would be impossible to do the same thing with local variables, since both 

subroutines need to access the variables, and local variables exist in only one subroutine. 

When you declare a local variable in a subroutine, you have to assign a value to that variable 

before you can do anything with it. Member variables, on the other hand are automatically 

initialized with a default value. The default values are the same as those that are used when 

initializing the elements of an array: For numeric variables, the default value is zero; for boolean 

variables, the default is false; for char variables, it's the character that has Unicode code 

number zero; and for objects, such as Strings, the default initial value is the special value null. 

Since they are of type int, the static member variables gamesPlayed and gamesWon 

automatically get zero as their initial value. This happens to be the correct initial value for a 

variable that is being used as a counter. You can, of course, assign a value to a variable at the 

beginning of the main() routine if you are not satisfied with the default initial value, or if you 

want to emphasize that you are depending on the default. 

Here's the revised version of GuessingGame.java. The changes from the above version are 

shown in red: 

public class GuessingGame2 { 

  

    static int gamesPlayed;   // The number of games played. 

    static int gamesWon;      // The number of games won. 

  

    public static void main(String[] args) { 

       gamesPlayed = 0; 

       gamesWon = 0;  // This is actually redundant, since 0 is  

                      //                 the default initial value. 

       System.out.println("Let's play a game.  I'll pick a number 

between"); 

       System.out.println("1 and 100, and you try to guess it."); 

       boolean playAgain; 

       do { 

          playGame();  // call subroutine to play one game 

          System.out.print("Would you like to play again? "); 

          playAgain = TextIO.getlnBoolean(); 



       } while (playAgain); 

       System.out.println(); 

       System.out.println("You played " + gamesPlayed + " games,"); 

       System.out.println("and you won " + gamesWon + " of those 

games."); 

       System.out.println("Thanks for playing.  Goodbye."); 

    } // end of main()             

     

    static void playGame() { 

        int computersNumber; // A random number picked by the 

computer. 

        int usersGuess;      // A number entered by user as a 

guess. 

        int guessCount;      // Number of guesses the user has 

made. 

        gamesPlayed++;  // Count this game. 

        computersNumber = (int)(100 * Math.random()) + 1; 

                 // The value assigned to computersNumber is a 

randomly 

                 //    chosen integer between 1 and 100, inclusive. 

        guessCount = 0; 

        System.out.println(); 

        System.out.print("What is your first guess? "); 

        while (true) { 

           usersGuess = TextIO.getInt();  // Get the user's guess. 

           guessCount++; 

           if (usersGuess == computersNumber) { 

              System.out.println("You got it in " + guessCount 

                      + " guesses!  My number was " + 

computersNumber); 

              gamesWon++;  // Count this win. 

              break;       // The game is over; the user has won. 

           } 

           if (guessCount == 6) { 

              System.out.println("You didn't get the number in 6 

guesses."); 

              System.out.println("You lose.  My number was " + 

computersNumber); 

              break;  // The game is over; the user has lost. 

           } 

           // If we get to this point, the game continues. 

           // Tell the user if the guess was too high or too low. 

           if (usersGuess < computersNumber) 

              System.out.print("That's too low.  Try again: "); 

           else if (usersGuess > computersNumber) 

              System.out.print("That's too high.  Try again: "); 

        } 

        System.out.println(); 

    } // end of playGame() 

                 

} // end of class GuessingGame2 

 

(By the way, notice that in my example programs, I didn't mark the static subroutines or 

variables as being public or private. You might wonder what it means to leave out both 



modifiers. Recall that global variables and subroutines with no access modifier can be used 

anywhere in the same package as the class where they are defined, but not in other packages. 

Classes that don't declare a package are in the default package. So, any class in the default 

package would have access to gamesPlayed, gamesWon, and playGame() -- and that 

includes pretty much every class in this book. In fact, it is considered to be good practice to make 

member variables and subroutines private, unless there is a reason for doing otherwise.) 

Parameters 

 

IF A SUBROUTINE IS A BLACK BOX, then a parameter is something that provides a 

mechanism for passing information from the outside world into the box. Parameters are part of 

the interface of a subroutine. They allow you to customize the behavior of a subroutine to adapt 

it to a particular situation. 

As an analogy, consider a thermostat -- a black box whose task it is to keep your house at a 

certain temperature. The thermostat has a parameter, namely the dial that is used to set the 

desired temperature. The thermostat always performs the same task: maintaining a constant 

temperature. However, the exact task that it performs -- that is, which temperature it maintains -- 

is customized by the setting on its dial. 

 

4.3.1  Using Parameters  

As an example, let's go back to the "3N+1" problem that was discussed in Subsection 3.2.2. 

(Recall that a 3N+1 sequence is computed according to the rule, "if N is odd, multiply it by 3 and 

add 1; if N is even, divide it by 2; continue until N is equal to 1." For example, starting from N=3 

we get the sequence: 3, 10, 5, 16, 8, 4, 2, 1.) Suppose that we want to write a subroutine to print 

out such sequences. The subroutine will always perform the same task: Print out a 3N+1 

sequence. But the exact sequence it prints out depends on the starting value of N. So, the starting 

value of N would be a parameter to the subroutine. The subroutine can be written like this: 

/** 

 * This subroutine prints a 3N+1 sequence to standard output, using 

 * startingValue as the initial value of N.  It also prints the 

number  

 * of terms in the sequence. The value of the parameter, 

startingValue,  

 * must  be a positive integer. 

 */ 

 

static void print3NSequence(int startingValue) { 

       

   int N;      // One of the terms in the sequence. 

   int count;  // The number of terms. 

   

http://math.hws.edu/javanotes/c3/s2.html#control.2.2


   N = startingValue;  // The first term is whatever value 

                       //    is passed to the subroutine as  

                       //    a parameter. 

    

   count = 1; // We have one term, the starting value, so far. 

    

   System.out.println("The 3N+1 sequence starting from " + N); 

   System.out.println(); 

   System.out.println(N);  // print initial term of sequence 

  

   while (N > 1) { 

       if (N % 2 == 1)     // is N odd? 

          N = 3 * N + 1; 

       else 

          N = N / 2; 

       count++;   // count this term 

       System.out.println(N);  // print this term 

   } 

    

   System.out.println(); 

   System.out.println("There were " + count + " terms in the 

sequence."); 

 

}  // end print3NSequence 

The parameter list of this subroutine, "(int startingValue)", specifies that the subroutine 

has one parameter, of type int. Within the body of the subroutine, the parameter name can be 

used in the same way as a variable name. But notice that there is nothing in the subroutine 

definition that gives a value to the parameter! The parameter gets its initial value from outside 

the subroutine. When the subroutine is called, a value must be provided for the parameter in the 

subroutine call statement. This value will be assigned to startingValue before the body of 

the subroutine is executed. For example, the subroutine could be called using the subroutine call 

statement "print3NSequence(17);". When the computer executes this statement, the 

computer first assigns the value 17 to startingValue and then executes the statements in the 

subroutine. This prints the 3N+1 sequence starting from 17. If K is a variable of type int, then the 

subroutine can be called by saying "print3NSequence(K);". When the computer executes 

this subroutine call statement, it takes the value of the variable K, assigns that value to 

startingValue, and then executes the body of the subroutine. 

The class that contains print3NSequence can contain a main() routine (or other 

subroutines) that call print3NSequence. For example, here is a main() program that prints 

out 3N+1 sequences for various starting values specified by the user: 

public static void main(String[] args) { 

   System.out.println("This program will print out 3N+1 

sequences"); 

   System.out.println("for starting values that you specify."); 

   System.out.println(); 

   int K;  // Input from user; loop ends when K < 0. 

   do { 

      System.out.println("Enter a starting value."); 

      System.out.print("To end the program, enter 0: "); 



      K = TextIO.getInt();  // Get starting value from user. 

      if (K > 0)   // Print sequence, but only if K is > 0. 

         print3NSequence(K); 

   } while (K > 0);   // Continue only if K > 0. 

} // end main 

Remember that before you can use this program, the definitions of main and of 

print3NSequence must both be wrapped inside a class definition. 

 

4.3.2  Formal and Actual Parameters  

Note that the term "parameter" is used to refer to two different, but related, concepts. There are 

parameters that are used in the definitions of subroutines, such as startingValue in the 

above example. And there are parameters that are used in subroutine call statements, such as the 

K in the statement "print3NSequence(K);". Parameters in a subroutine definition are 

called formal parameters or dummy parameters. The parameters that are passed to a subroutine 

when it is called are called actual parameters or arguments. When a subroutine is called, the 

actual parameters in the subroutine call statement are evaluated and the values are assigned to the 

formal parameters in the subroutine's definition. Then the body of the subroutine is executed. 

A formal parameter must be a name, that is, a simple identifier. A formal parameter is very 

much like a variable, and -- like a variable -- it has a specified type such as int, boolean, String, 

or double[]. An actual parameter is a value, and so it can be specified by any expression, 

provided that the expression computes a value of the correct type. The type of the actual 

parameter must be one that could legally be assigned to the formal parameter with an assignment 

statement. For example, if the formal parameter is of type double, then it would be legal to pass 

an int as the actual parameter since ints can legally be assigned to doubles. When you call a 

subroutine, you must provide one actual parameter for each formal parameter in the subroutine's 

definition. Consider, for example, a subroutine 

static void doTask(int N, double x, boolean test) { 

    // statements to perform the task go here 

} 

This subroutine might be called with the statement 

doTask(17, Math.sqrt(z+1), z >= 10); 

When the computer executes this statement, it has essentially the same effect as the block of 

statements: 

{ 

  int N;       // Allocate memory locations for the formal 

parameters. 

  double x; 

  boolean test; 



  N = 17;              // Assign 17 to the first formal parameter, 

N. 

  x = Math.sqrt(z+1);  // Compute Math.sqrt(z+1), and assign it to 

                       //    the second formal parameter, x. 

  test = (z >= 10);    // Evaluate "z >= 10" and assign the 

resulting 

                       //     true/false value to the third formal  

                       //     parameter, test. 

   // statements to perform the task go here 

} 

(There are a few technical differences between this and 

"doTask(17,Math.sqrt(z+1),z>=10);" -- besides the amount of typing -- because of 

questions about scope of variables and what happens when several variables or parameters have 

the same name.) 

Beginning programming students often find parameters to be surprisingly confusing. Calling a 

subroutine that already exists is not a problem -- the idea of providing information to the 

subroutine in a parameter is clear enough. Writing the subroutine definition is another matter. A 

common beginner's mistake is to assign values to the formal parameters at the beginning of the 

subroutine, or to ask the user to input their values. This represents a fundamental 

misunderstanding. When the statements in the subroutine are executed, the formal parameters 

have already been assigned initial values! The computer automatically assigns values to the 

parameters before it starts executing the code inside the subroutine. The values come from the 

subroutine call statement. Remember that a subroutine is not independent. It is called by some 

other routine, and it is the subroutine call statement's responsibility to provide appropriate values 

for the parameters. 

 

4.3.3  Overloading  

In order to call a subroutine legally, you need to know its name, you need to know how many 

formal parameters it has, and you need to know the type of each parameter. This information is 

called the subroutine's signature. The signature of the subroutine doTask, used as an example 

above, can be expressed as: doTask(int,double,boolean). Note that the signature does 

not include the names of the parameters; in fact, if you just want to use the subroutine, you don't 

even need to know what the formal parameter names are, so the names are not part of the 

interface. 

Java is somewhat unusual in that it allows two different subroutines in the same class to have the 

same name, provided that their signatures are different. When this happens, we say that the name 

of the subroutine is overloaded because it has several different meanings. The computer doesn't 

get the subroutines mixed up. It can tell which one you want to call by the number and types of 

the actual parameters that you provide in the subroutine call statement. You have already seen 

overloading used with System.out. This object includes many different methods named 

println, for example. These methods all have different signatures, such as: 



println(int)                   println(double) 

println(char)                  println(boolean) 

println() 

The computer knows which of these subroutines you want to use based on the type of the actual 

parameter that you provide. System.out.println(17) calls the subroutine with signature 

println(int), while System.out.println('A') calls the subroutine with signature 

println(char). Of course all these different subroutines are semantically related, which is 

why it is acceptable programming style to use the same name for them all. But as far as the 

computer is concerned, printing out an int is very different from printing out a char, which is 

different from printing out a boolean, and so forth -- so that each of these operations requires a 

different subroutine. 

Note, by the way, that the signature does not include the subroutine's return type. It is illegal to 

have two subroutines in the same class that have the same signature but that have different return 

types. For example, it would be a syntax error for a class to contain two subroutines defined as: 

int    getln() { ... } 

double getln() { ... } 

This is why in the TextIO class, the subroutines for reading different types are not all named 

getln(). In a given class, there can only be one routine that has the name getln with no 

parameters. So, the input routines in TextIO are distinguished by having different names, such as 

getlnInt() and getlnDouble(). 

 

4.3.4  Subroutine Examples  

Let's do a few examples of writing small subroutines to perform assigned tasks. Of course, this is 

only one side of programming with subroutines. The task performed by a subroutine is always a 

subtask in a larger program. The art of designing those programs -- of deciding how to break 

them up into subtasks -- is the other side of programming with subroutines. We'll return to the 

question of program design in Section 4.6. 

As a first example, let's write a subroutine to compute and print out all the divisors of a given 

positive integer. The integer will be a parameter to the subroutine. Remember that the syntax of 

any subroutine is: 

modifiers  return-type  subroutine-name  ( parameter-list ) { 

    statements 

} 

Writing a subroutine always means filling out this format. In this case, the statement of the 

problem tells us that there is one parameter, of type int, and it tells us what the statements in the 

body of the subroutine should do. Since we are only working with static subroutines for now, 

we'll need to use static as a modifier. We could add an access modifier (public or 

http://math.hws.edu/javanotes/c4/s6.html


private), but in the absence of any instructions, I'll leave it out. Since we are not told to return 

a value, the return type is void. Since no names are specified, we'll have to make up names for 

the formal parameter and for the subroutine itself. I'll use N for the parameter and 

printDivisors for the subroutine name. The subroutine will look like 

static void printDivisors( int N ) { 

    statements 

} 

and all we have left to do is to write the statements that make up the body of the routine. This is 

not difficult. Just remember that you have to write the body assuming that N already has a value! 

The algorithm is: "For each possible divisor D in the range from 1 to N, if D evenly divides N, 

then print D." Written in Java, this becomes: 

/** 

 * Print all the divisors of N. 

 * We assume that N is a positive integer. 

 */ 

static void printDivisors( int N ) { 

    int D;   // One of the possible divisors of N. 

    System.out.println("The divisors of " + N + " are:"); 

    for ( D = 1; D <= N; D++ ) { 

       if ( N % D == 0 )  // Dose D evenly divide N? 

          System.out.println(D); 

    } 

} 

I've added a comment before the subroutine definition indicating the contract of the subroutine -- 

that is, what it does and what assumptions it makes. The contract includes the assumption that N 

is a positive integer. It is up to the caller of the subroutine to make sure that this assumption is 

satisfied. 

As a second short example, consider the problem: Write a private subroutine named 

printRow. It should have a parameter ch of type char and a parameter N of type int. The 

subroutine should print out a line of text containing N copies of the character ch. 

Here, we are told the name of the subroutine and the names of the two parameters, and we are 

told that the subroutine is private, so we don't have much choice about the first line of the 

subroutine definition. The task in this case is pretty simple, so the body of the subroutine is easy 

to write. The complete subroutine is given by 

/** 

 * Write one line of output containing N copies of the 

 * character ch.  If N <= 0, an empty line is output. 

 */ 

private static void printRow( char ch, int N ) { 

    int i;  // Loop-control variable for counting off the copies. 

    for ( i = 1; i <= N; i++ ) { 

        System.out.print( ch ); 

    } 



    System.out.println(); 

} 

Note that in this case, the contract makes no assumption about N, but it makes it clear what will 

happen in all cases, including the unexpected case that N < 0. 

Finally, let's do an example that shows how one subroutine can build on another. Let's write a 

subroutine that takes a String as a parameter. For each character in the string, it should print a 

line of output containing 25 copies of that character. It should use the printRow() subroutine 

to produce the output. 

Again, we get to choose a name for the subroutine and a name for the parameter. I'll call the 

subroutine printRowsFromString and the parameter str. The algorithm is pretty clear: 

For each position i in the string str, call printRow(str.charAt(i),25) to print one 

line of the output. So, we get: 

/** 

 * For each character in str, write a line of output 

 * containing 25 copies of that character. 

 */ 

private static void printRowsFromString( String str ) { 

    int i;  // Loop-control variable for counting off the chars. 

    for ( i = 0; i < str.length(); i++ ) { 

        printRow( str.charAt(i), 25 ); 

    } 

} 

We could use printRowsFromString in a main() routine such as 

public static void main(String[] args) { 

    String inputLine;  // Line of text input by user. 

    System.out.print("Enter a line of text: "); 

    inputLine = TextIO.getln(); 

    System.out.println(); 

    printRowsFromString( inputLine ); 

} 

Of course, the three routines, main(), printRowsFromString(), and printRow(), 

would have to be collected together inside the same class. The program is rather useless, but it 

does demonstrate the use of subroutines. You'll find the program in the file RowsOfChars.java, if 

you want to take a look. 

 

4.3.5  Array Parameters  

It's possible for the type of a parameter to be an array type. This means that an entire array of 

values can be passed to the subroutine as a single parameter. For example, we might want a 

subroutine to print all the values in an integer array in a neat format, separated by commas and 

http://math.hws.edu/javanotes/source/chapter4/RowsOfChars.java


enclosed in a pair of square brackets. To tell it which array to print, the subroutine would have a 

parameter of type int[]: 

static void printValuesInList( int[] list ) { 

    System.out.print('['); 

    int i; 

    for ( i = 0; i < list.length; i++ ) { 

        if ( i > 0 ) 

            System.out.print(','); // No comma in front of list[0] 

        System.out.print(list[i]); 

    } 

    System.out.println((']'); 

} 

To use this subroutine, you need an actual array. Here is a legal, though not very realistic, code 

segment that creates an array just to pass it as an argument to the subroutine: 

int[] numbers; 

numbers = new int[3]; 

numbers[0] = 42; 

numbers[1] = 17; 

numbers[2] = 256; 

printValuesInList( numbers ); 

The output produced by the last statement would be [42,17,256]. 

 

4.3.6  Command-line Arguments  

The main routine of a program has a parameter of type String[]. When the main routine is 

called, some actual array of String must be passed to main() as the value of the parameter. The 

system provides the actual parameter when it calls main(), so the values come from outside the 

program. Where do the strings in the array come from, and what do they mean? The strings in 

the array are command-line arguments from the command that was used to run the program. 

When using a command-line interface, the user types a command to tell the system to execute a 

program. The user can include extra input in this command, beyond the name of the program. 

This extra input becomes the command-line arguments. The system takes the command-line 

arguments, puts them into an array of strings, and passes that array to main(). 

For example, if the name of the program is myProg, then the user can type "java myProg" to 

execute the program. In this case, there are no command-line arguments. But if the user types the 

command 

java myProg one two three 

then the command-line arguments are the strings "one", "two", and "three". The system puts 

these strings into an array of Strings and passes that array as a parameter to the main() routine. 



Here, for example, is a short program that simply prints out any command line arguments 

entered by the user: 

public class CLDemo { 

    

   public static void main(String[] args) { 

      System.out.println("You entered " + args.length 

                                  + " command-line arguments"); 

      if (args.length > 0) { 

         System.out.println("They were:"); 

         for (int i = 0; i < args.length; i++) 

            System.out.println("   " + args[i]); 

      } 

   } // end main() 

    

} // end class CLDemo 

Note that the parameter, args, can be an array of length zero. This just means that the user did 

not include any command-line arguments when running the program.  

In practice, command-line arguments are often used to pass the names of files to a program. For 

example, consider the following program for making a copy of a text file. It does this by copying 

one line at a time from the original file to the copy, using TextIO. The function 

TextIO.eof() is a boolean-valued function that is true if the end of the file has been 

reached. 

/** 

 *  Requires two command line arguments, which must be file names.  

The 

 *  the first must be the name of an existing file.  The second is 

the name 

 *  of a file to be created by the program.  The contents of the 

first file 

 *  are copied into the second.  WARNING:  If the second file 

already  

 *  exists when the program is run, its previous contents will be 

lost! 

 *  This program only works for plain text files. 

 */ 

public class CopyTextFile { 

 

    public static void main( String[] args ) { 

        if (args.length < 2 ) { 

            System.out.println("Two command-line arguments are 

required!"); 

            System.exit(1); 

        } 

        TextIO.readFile( args[0] );   // Open the original file for 

reading. 

        TextIO.writeFile( args[1] );  // Open the copy file for 

writing. 

        int lineCount;  // Number of lines copied 

        lineCount = 0; 

        while ( TextIO.eof() == false ) { 



            // Read one line from the original file and write it to 

the copy. 

            String line; 

            line = TextIO.getln(); 

            TextIO.putln(line); 

            lineCount++; 

        } 

        System.out.printf( "%d lines copied from %s to %s%n", 

                                lineCount, args[0], args[1] ); 

    } 

 

} 

Since most programs are run in a GUI environment these days, command-line arguments aren't 

as important as they used to be. But at least they provide a nice example of how array parameters 

can be used. 

 

4.3.7  Throwing Exceptions  

I have been talking about the "contract" of a subroutine. The contract says what the subroutine 

will do, provided that the caller of the subroutine provides acceptable values for the subroutine's 

parameters. The question arises, though, what should the subroutine do when the caller violates 

the contract by providing bad parameter values? 

We've already seen that some subroutines respond to bad parameter values by throwing 

exceptions. (See Section 3.7.) For example, the contract of the built-in subroutine 

Double.parseDouble says that the parameter should be a string representation of a number 

of type double; if this is true, then the subroutine will convert the string into the equivalent 

numeric value. If the caller violates the contract by passing an invalid string as the actual 

parameter, the subroutine responds by throwing an exception of type NumberFormatException. 

Many subroutines throw IllegalArgumentExceptions in response to bad parameter values. You 

might want to do the same in your own subroutines. This can be done with a throw statement. An 

exception is an object, and in order to throw an exception, you must create an exception object. 

You won't officially learn how to do this until Chapter 5, but for now, you can use the following 

syntax for a throw statement that throws an IllegalArgumentException: 

throw  new  IllegalArgumentException( error-message ); 

where error-message is a string that describes the error that has been detected. (The word "new" 

in this statement is what creates the object.) To use this statement in a subroutine, you would 

check whether the values of the parameters are legal. If not, you would throw the exception. For 

example, consider the print3NSequence subroutine from the beginning of this section. The 

parameter of print3NSequence is supposed to be a positive integer. We can modify the 

subroutine definition to make it throw an exception when this condition is violated: 

static void print3NSequence(int startingValue) { 

http://math.hws.edu/javanotes/c3/s7.html
http://math.hws.edu/javanotes/c5/index.html


    

   if (startingValue <= 0)  // The contract is violated! 

      throw new IllegalArgumentException( "Starting value must be 

positive." ); 

   . 

   .  // (The rest of the subroutine is the same as before.) 

   . 

If the start value is bad, the computer executes the throw statement. This will immediately 

terminate the subroutine, without executing the rest of the body of the subroutine. Furthermore, 

the program as a whole will crash unless the exception is "caught" and handled elsewhere in the 

program by a try..catch statement, as discussed in Section 3.7. For this to work, the 

subroutine call would have to be in the "try" part of the statement. 

 

4.3.8  Global and Local Variables  

I'll finish this section on parameters by noting that we now have three different sorts of variables 

that can be used inside a subroutine: local variables declared in the subroutine, formal parameter 

names, and static member variables that are declared outside the subroutine. 

Local variables have no connection to the outside world; they are purely part of the internal 

working of the subroutine. 

Parameters are used to "drop" values into the subroutine when it is called, but once the 

subroutine starts executing, parameters act much like local variables. Changes made inside a 

subroutine to a formal parameter have no effect on the rest of the program (at least if the type of 

the parameter is one of the primitive types -- things are more complicated in the case of arrays 

and objects, as we'll see later). 

Things are different when a subroutine uses a variable that is defined outside the subroutine. That 

variable exists independently of the subroutine, and it is accessible to other parts of the program 

as well. Such a variable is said to be global to the subroutine, as opposed to the local variables 

defined inside the subroutine. A global variable can be used in the entire class in which it is 

defined and, if it not private, in other classes as well. Changes made to a global variable can 

have effects that extend outside the subroutine where the changes are made. You've seen how 

this works in the last example in the previous section, where the values of the global variables, 

gamesPlayed and gamesWon, are computed inside a subroutine and are used in the main() 

routine. 

It's not always bad to use global variables in subroutines, but you should realize that the global 

variable then has to be considered part of the subroutine's interface. The subroutine uses the 

global variable to communicate with the rest of the program. This is a kind of sneaky, back-door 

communication that is less visible than communication done through parameters, and it risks 

violating the rule that the interface of a black box should be straightforward and easy to 

http://math.hws.edu/javanotes/c3/s7.html
http://math.hws.edu/javanotes/c4/s2.html


understand. So before you use a global variable in a subroutine, you should consider whether it's 

really necessary. 

I don't advise you to take an absolute stand against using global variables inside subroutines. 

There is at least one good reason to do it: If you think of the class as a whole as being a kind of 

black box, it can be very reasonable to let the subroutines inside that box be a little sneaky about 

communicating with each other, if that will make the class as a whole look simpler from the 

outside. 

Return Values 

 

A SUBROUTINE THAT RETURNS A VALUE is called a function. A given function can only 

return a value of a specified type, called the return type of the function. A function call generally 

occurs in a position where the computer is expecting to find a value, such as the right side of an 

assignment statement, as an actual parameter in a subroutine call, or in the middle of some larger 

expression. A boolean-valued function can even be used as the test condition in an if, while, 

for or do..while statement. 

(It is also legal to use a function call as a stand-alone statement, just as if it were a regular 

subroutine. In this case, the computer ignores the value computed by the subroutine. Sometimes 

this makes sense. For example, the function TextIO.getln(), with a return type of String, 

reads and returns a line of input typed in by the user. Usually, the line that is returned is assigned 

to a variable to be used later in the program, as in the statement 

"name = TextIO.getln();". However, this function is also useful as a subroutine call 

statement "TextIO.getln();", which still reads all input up to and including the next 

carriage return. Since the return value is not assigned to a variable or used in an expression, it is 

simply discarded. So, the effect of the subroutine call is to read and discard some input. 

Sometimes, discarding unwanted input is exactly what you need to do.) 

 

4.4.1  The return statement  

You've already seen how functions such as Math.sqrt() and TextIO.getInt() can be 

used. What you haven't seen is how to write functions of your own. A function takes the same 

form as a regular subroutine, except that you have to specify the value that is to be returned by 

the subroutine. This is done with a return statement, which has the following syntax: 

return  expression ; 

Such a return statement can only occur inside the definition of a function, and the type of the 

expression must match the return type that was specified for the function. (More exactly, it must 

be legal to assign the expression to a variable whose type is specified by the return type.) When 



the computer executes this return statement, it evaluates the expression, terminates execution 

of the function, and uses the value of the expression as the returned value of the function. 

For example, consider the function definition 

static double pythagoras(double x, double y) { 

      // Computes the length of the hypotenuse of a right 

      // triangle, where the sides of the triangle are x and y. 

    return  Math.sqrt( x*x + y*y ); 

} 

Suppose the computer executes the statement "totalLength = 17 + 

pythagoras(12,5);". When it gets to the term pythagoras(12,5), it assigns the actual 

parameters 12 and 5 to the formal parameters x and y in the function. In the body of the 

function, it evaluates Math.sqrt(12.0*12.0 + 5.0*5.0), which works out to 13.0. 

This value is "returned" by the function, so the 13.0 essentially replaces the function call in the 

assignment statement, which then has the same effect as the statement 

"totalLength = 17+13.0". The return value is added to 17, and the result, 30.0, is stored 

in the variable, totalLength. 

Note that a return statement does not have to be the last statement in the function definition. 

At any point in the function where you know the value that you want to return, you can return it. 

Returning a value will end the function immediately, skipping any subsequent statements in the 

function. However, it must be the case that the function definitely does return some value, no 

matter what path the execution of the function takes through the code. 

You can use a return statement inside an ordinary subroutine, one with declared return type 

"void". Since a void subroutine does not return a value, the return statement does not include 

an expression; it simply takes the form "return;". The effect of this statement is to terminate 

execution of the subroutine and return control back to the point in the program from which the 

subroutine was called. This can be convenient if you want to terminate execution somewhere in 

the middle of the subroutine, but return statements are optional in non-function subroutines. 

In a function, on the other hand, a return statement, with expression, is always required. 

Note that a return inside a loop will end the loop as well as the subroutine that contains it. 

Similarly, a return in a switch statement breaks out of the switch statement as well as the 

subroutine. So, you will sometimes use return in contexts where you are used to seeing a 

break. 

 

4.4.2  Function Examples  

Here is a very simple function that could be used in a program to compute 3N+1 sequences. (The 

3N+1 sequence problem is one we've looked at several times already, including in the previous 

http://math.hws.edu/javanotes/c4/s3.html


section.) Given one term in a 3N+1 sequence, this function computes the next term of the 

sequence: 

static int nextN(int currentN) { 

   if (currentN % 2 == 1)     // test if current N is odd 

      return 3*currentN + 1;  // if so, return this value 

   else 

      return currentN / 2;    // if not, return this instead 

} 

This function has two return statements. Exactly one of the two return statements is 

executed to give the value of the function. Some people prefer to use a single return statement 

at the very end of the function when possible. This allows the reader to find the return 

statement easily. You might choose to write nextN() like this, for example: 

static int nextN(int currentN) { 

   int answer;  // answer will be the value returned 

   if (currentN % 2 == 1)    // test if current N is odd 

      answer = 3*currentN+1; // if so, this is the answer 

   else 

      answer = currentN / 2; // if not, this is the answer 

   return answer;   // (Don't forget to return the answer!) 

} 

Here is a subroutine that uses this nextN function. In this case, the improvement from the 

version of the subroutine in Section 4.3 is not great, but if nextN() were a long function that 

performed a complex computation, then it would make a lot of sense to hide that complexity 

inside a function: 

static void print3NSequence(int startingValue) { 

  

   int N;       // One of the terms in the sequence. 

   int count;   // The number of terms found. 

    

   N = startingValue;   // Start the sequence with startingValue. 

   count = 1; 

    

   System.out.println("The 3N+1 sequence starting from " + N); 

   System.out.println(); 

   System.out.println(N);  // print initial term of sequence 

  

   while (N > 1) { 

       N = nextN( N );   // Compute next term, using the function 

nextN. 

       count++;          // Count this term. 

       System.out.println(N);  // Print this term. 

   } 

    

   System.out.println(); 

   System.out.println("There were " + count + " terms in the 

sequence."); 

 

} 

http://math.hws.edu/javanotes/c4/s3.html
http://math.hws.edu/javanotes/c4/s3.html


 

Here are a few more examples of functions. The first one computes a letter grade corresponding 

to a given numerical grade, on a typical grading scale: 

/** 

 * Returns the letter grade corresponding to the numerical 

 * grade that is passed to this function as a parameter. 

 */ 

static char letterGrade(int numGrade) { 

   if (numGrade >= 90) 

      return 'A';   // 90 or above gets an A 

   else if (numGrade >= 80) 

      return 'B';   // 80 to 89 gets a B 

   else if (numGrade >= 65) 

      return 'C';   // 65 to 79 gets a C 

   else if (numGrade >= 50) 

      return 'D';   // 50 to 64 gets a D 

   else 

      return 'F';   // anything else gets an F 

    

}  // end of function letterGrade 

The type of the return value of letterGrade() is char. Functions can return values of any 

type at all. Here's a function whose return value is of type boolean. It demonstrates some 

interesting programming points, so you should read the comments: 

/** 

 * This function returns true if N is a prime number.  A prime 

number 

 * is an integer greater than 1 that is not divisible by any 

positive  

 * integer, except itself and 1.  If N has any divisor, D, in the 

range  

 * 1 < D < N, then it has a divisor in the range 2 to Math.sqrt(N), 

namely 

 * either D itself or N/D.  So we only test possible divisors from 

2 to  

 * Math.sqrt(N). 

 */ 

static boolean isPrime(int N) { 

       

   int divisor;  // A number we will test to see whether it evenly 

divides N. 

    

   if (N <= 1) 

      return false;  // No number <= 1 is a prime. 

    

   int maxToTry;  // The largest divisor that we need to test. 

 

   maxToTry = (int)Math.sqrt(N); 

        // We will try to divide N by numbers between 2 and 

maxToTry. 



        // If N is not evenly divisible by any of these numbers, 

then  

        // N is prime.  (Note that since Math.sqrt(N) is defined to 

        // return a value of type double, the value must be 

typecast  

        // to type int before it can be assigned to maxToTry.) 

         

    for (divisor = 2; divisor <= maxToTry; divisor++) { 

        if ( N % divisor == 0 )  // Test if divisor evenly divides 

N. 

           return false;         // If so, we know N is not prime. 

                                 // No need to continue testing! 

    } 

     

    // If we get to this point, N must be prime.  Otherwise, 

    // the function would already have been terminated by 

    // a return statement in the previous loop. 

     

    return true;  // Yes, N is prime. 

  

}  // end of function isPrime 

Finally, here is a function with return type String. This function has a String as parameter. The 

returned value is a reversed copy of the parameter. For example, the reverse of "Hello World" is 

"dlroW olleH". The algorithm for computing the reverse of a string, str, is to start with an 

empty string and then to append each character from str, starting from the last character of str 

and working backwards to the first: 

static String reverse(String str) { 

   String copy;  // The reversed copy. 

   int i;        // One of the positions in str,  

                 //       from str.length() - 1 down to 0. 

   copy = "";    // Start with an empty string. 

   for ( i = str.length() - 1;  i >= 0;  i-- ) { 

            // Append i-th char of str to copy. 

      copy = copy + str.charAt(i);   

   } 

   return copy; 

} 

A palindrome is a string that reads the same backwards and forwards, such as "radar". The 

reverse() function could be used to check whether a string, word, is a palindrome by testing 

"if (word.equals(reverse(word)))". 

By the way, a typical beginner's error in writing functions is to print out the answer, instead of 

returning it. This represents a fundamental misunderstanding. The task of a function is to 

compute a value and return it to the point in the program where the function was called. That's 

where the value is used. Maybe it will be printed out. Maybe it will be assigned to a variable. 

Maybe it will be used in an expression. But it's not for the function to decide. 

 



4.4.3  3N+1 Revisited  

I'll finish this section with a complete new version of the 3N+1 program. This will give me a 

chance to show the function nextN(), which was defined above, used in a complete program. 

I'll also take the opportunity to improve the program by getting it to print the terms of the 

sequence in columns, with five terms on each line. This will make the output more presentable. 

The idea is this: Keep track of how many terms have been printed on the current line; when that 

number gets up to 5, start a new line of output. To make the terms line up into neat columns, I 

use formatted output. 

/** 

 * A program that computes and displays several 3N+1 sequences.  

Starting 

 * values for the sequences are input by the user.  Terms in the 

sequence  

 * are printed in columns, with five terms on each line of output. 

 * After a sequence has been displayed, the number of terms in that  

 * sequence is reported to the user. 

 */ 

public class ThreeN2 { 

           

    

   public static void main(String[] args) { 

 

      System.out.println("This program will print out 3N+1 

sequences"); 

      System.out.println("for starting values that you specify."); 

      System.out.println(); 

       

      int K;   // Starting point for sequence, specified by the 

user. 

      do { 

         System.out.println("Enter a starting value;"); 

         System.out.print("To end the program, enter 0: "); 

         K = TextIO.getlnInt();  // get starting value from user 

         if (K > 0)              // print sequence, but only if K 

is > 0 

            print3NSequence(K); 

      } while (K > 0);           // continue only if K > 0 

  

   } // end main 

  

 

   /** 

    * print3NSequence prints a 3N+1 sequence to standard output, 

using 

    * startingValue as the initial value of N.  It also prints the 

number  

    * of terms in the sequence. The value of the parameter, 

startingValue,  

    * must be a positive integer. 

    */ 

   static void print3NSequence(int startingValue) { 

   



      int N;       // One of the terms in the sequence. 

      int count;   // The number of terms found. 

      int onLine;  // The number of terms that have been output 

                   //     so far on the current line. 

       

      N = startingValue;   // Start the sequence with 

startingValue; 

      count = 1;           // We have one term so far. 

    

      System.out.println("The 3N+1 sequence starting from " + N); 

      System.out.println(); 

      System.out.printf("%8d", N);  // Print initial term, using 8 

characters. 

      onLine = 1;        // There's now 1 term on current output 

line. 

    

      while (N > 1) { 

          N = nextN(N);  // compute next term 

          count++;   // count this term 

          if (onLine == 5) {  // If current output line is full 

             System.out.println();  // ...then output a carriage 

return 

             onLine = 0;      // ...and note that there are no 

terms  

                              //               on the new line. 

          } 

          System.out.printf("%8d", N);  // Print this term in an 8-

char column. 

          onLine++;   // Add 1 to the number of terms on this line. 

      } 

    

      System.out.println();  // end current line of output 

      System.out.println();  // and then add a blank line 

      System.out.println("There were " + count + " terms in the 

sequence."); 

    

   }  // end of print3NSequence 

    

    

   /** 

    * nextN computes and returns the next term in a 3N+1 sequence, 

    * given that the current term is currentN. 

    */ 

   static int nextN(int currentN) { 

       if (currentN % 2 == 1) 

          return 3 * currentN + 1; 

       else 

          return currentN / 2; 

   }  // end of nextN() 

    

    

} // end of class ThreeN2 

You should read this program carefully and try to understand how it works.  



APIs, Packages, and Javadoc 

 

AS COMPUTERS AND THEIR USER INTERFACES have become easier to use, they have 

also become more complex for programmers to deal with. You can write programs for a simple 

console-style user interface using just a few subroutines that write output to the console and read 

the user's typed replies. A modern graphical user interface, with windows, buttons, scroll bars, 

menus, text-input boxes, and so on, might make things easier for the user, but it forces the 

programmer to cope with a hugely expanded array of possibilities. The programmer sees this 

increased complexity in the form of great numbers of subroutines that are provided for managing 

the user interface, as well as for other purposes. 

 

4.5.1  Toolboxes  

Someone who wanted to program for Macintosh computers -- and to produce programs that look 

and behave the way users expect them to -- had to deal with the Macintosh Toolbox, a collection 

of well over a thousand different subroutines. There are routines for opening and closing 

windows, for drawing geometric figures and text to windows, for adding buttons to windows, 

and for responding to mouse clicks on the window. There are other routines for creating menus 

and for reacting to user selections from menus. Aside from the user interface, there are routines 

for opening files and reading data from them, for communicating over a network, for sending 

output to a printer, for handling communication between programs, and in general for doing all 

the standard things that a computer has to do. Microsoft Windows provides its own set of 

subroutines for programmers to use, and they are quite a bit different from the subroutines used 

on the Mac. Linux has several different GUI toolboxes for the programmer to choose from. 

The analogy of a "toolbox" is a good one to keep in mind. Every programming project involves a 

mixture of innovation and reuse of existing tools. A programmer is given a set of tools to work 

with, starting with the set of basic tools that are built into the language: things like variables, 

assignment statements, if statements, and loops. To these, the programmer can add existing 

toolboxes full of routines that have already been written for performing certain tasks. These 

tools, if they are well-designed, can be used as true black boxes: They can be called to perform 

their assigned tasks without worrying about the particular steps they go through to accomplish 

those tasks. The innovative part of programming is to take all these tools and apply them to some 

particular project or problem (word-processing, keeping track of bank accounts, processing 

image data from a space probe, Web browsing, computer games, ...). This is called applications 

programming. 

A software toolbox is a kind of black box, and it presents a certain interface to the programmer. 

This interface is a specification of what routines are in the toolbox, what parameters they use, 

and what tasks they perform. This information constitutes the API, or Application Programming 

Interface, associated with the toolbox. The Macintosh API is a specification of all the routines 

available in the Macintosh Toolbox. A company that makes some hardware device -- say a card 



for connecting a computer to a network -- might publish an API for that device consisting of a 

list of routines that programmers can call in order to communicate with and control the device. 

Scientists who write a set of routines for doing some kind of complex computation -- such as 

solving "differential equations," say -- would provide an API to allow others to use those 

routines without understanding the details of the computations they perform. 

 

The Java programming language is supplemented by a large, standard API. You've seen part of 

this API already, in the form of mathematical subroutines such as Math.sqrt(), the String 

data type and its associated routines, and the System.out.print() routines. The standard 

Java API includes routines for working with graphical user interfaces, for network 

communication, for reading and writing files, and more. It's tempting to think of these routines as 

being built into the Java language, but they are technically subroutines that have been written and 

made available for use in Java programs. 

Java is platform-independent. That is, the same program can run on platforms as diverse as 

Mac OS, Windows, Linux, and others. The same Java API must work on all these platforms. But 

notice that it is the interface that is platform-independent; the implementation varies from one 

platform to another. A Java system on a particular computer includes implementations of all the 

standard API routines. A Java program includes only calls to those routines. When the Java 

interpreter executes a program and encounters a call to one of the standard routines, it will pull 

up and execute the implementation of that routine which is appropriate for the particular platform 

on which it is running. This is a very powerful idea. It means that you only need to learn one API 

to program for a wide variety of platforms. 

 

4.5.2  Java's Standard Packages  

Like all subroutines in Java, the routines in the standard API are grouped into classes. To provide 

larger-scale organization, classes in Java can be grouped into packages, which were introduced 

briefly in Subsection 2.6.6. You can have even higher levels of grouping, since packages can 

also contain other packages. In fact, the entire standard Java API is implemented in several 

packages. One of these, which is named "java", contains several non-GUI packages as well as 

the original AWT graphics user interface classes. Another package, "javax", was added in Java 

version 1.2 and contains the classes used by the Swing graphical user interface and other 

additions to the API. 

A package can contain both classes and other packages. A package that is contained in another 

package is sometimes called a "sub-package." Both the java package and the javax package 

contain sub-packages. One of the sub-packages of java, for example, is called "awt". Since 

awt is contained within java, its full name is actually java.awt. This package contains 

classes that represent GUI components such as buttons and menus in the AWT. AWT is the older 

of the two Java GUI toolboxes and is no longer widely used. However, java.awt also contains 

a number of classes that form the foundation for all GUI programming, such as the Graphics 

http://math.hws.edu/javanotes/c2/s6.html#basics.6.6


class which provides routines for drawing on the screen, the Color class which represents 

colors, and the Font class which represents the fonts that are used to display characters on the 

screen. Since these classes are contained in the package java.awt, their full names are actually 

java.awt.Graphics, java.awt.Color, and java.awt.Font. (I hope that by now 

you've gotten the hang of how this naming thing works in Java.) Similarly, javax contains a 

sub-package named javax.swing, which includes such GUI classes as 

javax.swing.JButton, javax.swing.JMenu, and javax.swing.JFrame. The 

GUI classes in javax.swing, together with the foundational classes in java.awt, are all 

part of the API that makes it possible to program graphical user interfaces in Java. 

The java package includes several other sub-packages, such as java.io, which provides 

facilities for input/output, java.net, which deals with network communication, and 

java.util, which provides a variety of "utility" classes. The most basic package is called 

java.lang. This package contains fundamental classes such as String, Math, Integer, and 

Double. 

It might be helpful to look at a graphical representation of the levels of nesting in the java 

package, its sub-packages, the classes in those sub-packages, and the subroutines in those 

classes. This is not a complete picture, since it shows only a very few of the many items in each 

element: 

 

The official documentation for the standard Java 7 API lists 209 different packages, including 

sub-packages, and it lists 4024 classes in these packages. Many of these are rather obscure or 

very specialized, but you might want to browse through the documentation to see what is 

available. As I write this, the documentation for the complete API can be found at 



http://download.oracle.com/javase/7/docs/api/ 

Even an expert programmer won't be familiar with the entire API, or even a majority of it. In this 

book, you'll only encounter several dozen classes, and those will be sufficient for writing a wide 

variety of programs. 

 

4.5.3  Using Classes from Packages  

Let's say that you want to use the class java.awt.Color in a program that you are writing. 

Like any class, java.awt.Color is a type, which means that you can use it to declare 

variables and parameters and to specify the return type of a function. One way to do this is to use 

the full name of the class as the name of the type. For example, suppose that you want to declare 

a variable named rectColor of type java.awt.Color. You could say: 

java.awt.Color  rectColor; 

This is just an ordinary variable declaration of the form "type-name variable-name;". Of 

course, using the full name of every class can get tiresome, and you will hardly ever see full 

names like java.awt.Color used in a program. Java makes it possible to avoid using the full 

name of a class by importing the class. If you put 

import java.awt.Color; 

at the beginning of a Java source code file, then, in the rest of the file, you can abbreviate the full 

name java.awt.Color to just the simple name of the class, which is Color. Note that the 

import line comes at the start of a file (after the package statement, if there is one) and is not 

inside any class. Although it is sometimes referred to as a statement, it is more properly called an 

import directive since it is not a statement in the usual sense. The import directive 

"import java.awt.Color" would allow you to say 

Color  rectColor; 

to declare the variable. Note that the only effect of the import directive is to allow you to use 

simple class names instead of full "package.class" names. You aren't really importing anything 

substantial; if you leave out the import directive, you can still access the class -- you just have 

to use its full name. There is a shortcut for importing all the classes from a given package. You 

can import all the classes from java.awt by saying 

import java.awt.*; 

The "*" is a wildcard that matches every class in the package. (However, it does not match sub-

packages; for example, you cannot import the entire contents of all the sub-packages of the 

java package by saying import java.*.) 

http://download.oracle.com/javase/7/docs/api/


Some programmers think that using a wildcard in an import statement is bad style, since it can 

make a large number of class names available that you are not going to use and might not even 

know about. They think it is better to explicitly import each individual class that you want to use. 

In my own programming, I often use wildcards to import all the classes from the most relevant 

packages, and use individual imports when I am using just one or two classes from a given 

package. 

In fact, any Java program that uses a graphical user interface is likely to use many classes from 

the java.awt and javax.swing packages as well as from another package named 

java.awt.event, and I often begin such programs with 

import java.awt.*; 

import java.awt.event.*; 

import javax.swing.*; 

A program that works with networking might include the line "import java.net.*;", 

while one that reads or writes files might use "import java.io.*;". But when you start 

importing lots of packages in this way, you have to be careful about one thing: It's possible for 

two classes that are in different packages to have the same name. For example, both the 

java.awt package and the java.util package contain a class named List. If you import 

both java.awt.* and java.util.*, the simple name List will be ambiguous. If you try 

to declare a variable of type List, you will get a compiler error message about an ambiguous 

class name. You can still use both classes in your program: Use the full name of the class, either 

java.awt.List or java.util.List. Another solution, of course, is to use import to 

import the individual classes you need, instead of importing entire packages. 

Because the package java.lang is so fundamental, all the classes in java.lang are 

automatically imported into every program. It's as if every program began with the statement 

"import java.lang.*;". This is why we have been able to use the class name String 

instead of java.lang.String, and Math.sqrt() instead of 

java.lang.Math.sqrt(). It would still, however, be perfectly legal to use the longer 

forms of the names. 

Programmers can create new packages. Suppose that you want some classes that you are writing 

to be in a package named utilities. Then the source code file that defines those classes must 

begin with the line 

package utilities; 

This would come even before any import directive in that file. Furthermore, the source code 

file would be placed in a folder with the same name as the package, "utilities" in this example. 

And a class that is in a subpackage must be in a subfolder. For example, a class in a package 

named utilities.net would be in folder named "net" inside a folder named "utilities". A 

class that is in a package automatically has access to other classes in the same package; that is, a 

class doesn't have to import the package in which it is defined. 



In projects that define large numbers of classes, it makes sense to organize those classes into 

packages. It also makes sense for programmers to create new packages as toolboxes that provide 

functionality and APIs for dealing with areas not covered in the standard Java API. (And in fact 

such "toolmaking" programmers often have more prestige than the applications programmers 

who use their tools.) 

However, with just a couple of exceptions, I will not be creating packages in this textbook. For 

the purposes of this book, you need to know about packages mainly so that you will be able to 

import the standard packages. These packages are always available to the programs that you 

write. You might wonder where the standard classes are actually located. Again, that can depend 

to some extent on the version of Java that you are using, but in recent standard versions, they are 

stored in jar files in a subdirectory named lib inside the Java Runtime Environment installation 

directory. A jar (or "Java archive") file is a single file that can contain many classes. Most of the 

standard classes can be found in a jar file named rt.jar. In fact, Java programs are generally 

distributed in the form of jar files, instead of as individual class files. 

Although we won't be creating packages explicitly, every class is actually part of a package. If a 

class is not specifically placed in a package, then it is put in something called the default 

package, which has no name. Almost all the examples that you see in this book are in the default 

package. 

 

4.5.4  Javadoc  

To use an API effectively, you need good documentation for it. The documentation for most Java 

APIs is prepared using a system called Javadoc. For example, this system is used to prepare the 

documentation for Java's standard packages. And almost everyone who creates a toolbox in Java 

publishes Javadoc documentation for it. 

Javadoc documentation is prepared from special comments that are placed in the Java source 

code file. Recall that one type of Java comment begins with /* and ends with */. A Javadoc 

comment takes the same form, but it begins with /** rather than simply /*. You have already 

seen comments of this form in many of the examples in this book. 

Note that a Javadoc comment must be placed just before the subroutine that it is commenting on. 

This rule is always followed. You can have Javadoc comments for subroutines, for member 

variables, and for classes. The Javadoc comment always immediately precedes the thing it is 

commenting on. 

Like any comment, a Javadoc comment is ignored by the computer when the file is compiled. 

But there is a tool called javadoc that reads Java source code files, extracts any Javadoc 

comments that it finds, and creates a set of Web pages containing the comments in a nicely 

formatted, interlinked form. By default, javadoc will only collect information about public 

classes, subroutines, and member variables, but it allows the option of creating documentation 

for non-public things as well. If javadoc doesn't find any Javadoc comment for something, it 



will construct one, but the comment will contain only basic information such as the name and 

type of a member variable or the name, return type, and parameter list of a subroutine. This is 

syntactic information. To add information about semantics and pragmatics, you have to write a 

Javadoc comment. 

As an example, you can look at the documentation Web page for TextIO by following this link: 

TextIO Javadoc documentation. The documentation page was created by applying the javadoc 

tool to the source code file, TextIO.java. If you have downloaded the on-line version of this 

book, the documentation can be found in the TextIO_Javadoc directory. 

In a Javadoc comment, the *'s at the start of each line are optional. The javadoc tool will 

remove them. In addition to normal text, the comment can contain certain special codes. For one 

thing, the comment can contain HTML mark-up commands. HTML is the language that is used 

to create web pages, and Javadoc comments are meant to be shown on web pages. The 

javadoc tool will copy any HTML commands in the comments to the web pages that it creates. 

The book will not teach you HTML, but as an example, you can add <p> to indicate the start of 

a new paragraph. (Generally, in the absence of HTML commands, blank lines and extra spaces in 

the comment are ignored. Furthermore, the characters & and< have special meaning in HTML 

and should not be used in Javadoc comments except with those meanings; they can be written as 

&amp; and &lt;.) 

In addition to HTML commands, Javadoc comments can include doc tags, which are processed 

as commands by the javadoc tool. A doc tag has a name that begins with the character @. I will 

only discuss four tags: @author, @param, @return, and @throws. The @author tag can 

be used only for a class, and should be followed by the name of the author. The other three tags 

are used in Javadoc comments for a subroutine to provide information about its parameters, its 

return value, and the exceptions that it might throw. These tags must be placed at the end of the 

comment, after any description of the subroutine itself. The syntax for using them is:  

@param  parameter-name   description-of-parameter 

    

@return  description-of-return-value 

    

@throws  exception-class-name   description-of-exception 

The descriptions can extend over several lines. The description ends at the next doc tag or at the 

end of the comment. You can include a @param tag for every parameter of the subroutine and a 

@throws for as many types of exception as you want to document. You should have a 

@return tag only for a non-void subroutine. These tags do not have to be given in any 

particular order. 

Here is an example that doesn't do anything exciting but that does use all three types of doc tag: 

/** 

 * This subroutine computes the area of a rectangle, given its 

width 

http://math.hws.edu/javanotes/TextIO_Javadoc/TextIO.html
http://math.hws.edu/javanotes/source/chapter4/TextIO.java
http://math.hws.edu/javanotes/c4/s3.html#subroutines.3.5


 * and its height.  The length and the width should be positive 

numbers. 

 * @param width the length of one side of the rectangle 

 * @param height the length the second side of the rectangle 

 * @return the area of the rectangle 

 * @throws IllegalArgumentException if either the width or the 

height 

 *    is a negative number. 

 */ 

public static double areaOfRectangle( double length, double width ) 

{ 

    if ( width < 0  ||  height < 0 ) 

       throw new IllegalArgumentException("Sides must have positive 

length."); 

    double area; 

    area = width * height; 

    return area;  

} 

I use Javadoc comments for many of my examples. I encourage you to use them in your own 

code, even if you don't plan to generate Web page documentation of your work, since it's a 

standard format that other Java programmers will be familiar with. 

If you do want to create Web-page documentation, you need to run the javadoc tool. This tool 

is available as a command in the Java Development Kit that was discussed in Section 2.6. You 

can use javadoc in a command line interface similarly to the way that the javac and java 

commands are used. Javadoc can also be applied in the integrated development environments 

that were also discussed in Section 2.6. I won't go into any of the details here; consult the 

documentation for your programming environment. 

 

4.5.5  Static Import  

Before ending this section, I will mention an extension of the import directive. We have seen 

that import makes it possible to refer to a class such as java.awt.Color using its simple 

name, Color. But you still have to use compound names to refer to static member variables such 

as System.out and to static methods such as Math.sqrt. 

There is another form of the import directive that can be used to import static members of a 

class in the same way that the ordinary import directive imports classes from a package. That 

form of the directive is called a static import, and it has syntax 

import static package-name.class-name.static-member-name; 

to import one static member name from a class, or 

import static package-name.class-name.*; 

http://math.hws.edu/javanotes/c2/s6.html
http://math.hws.edu/javanotes/c2/s6.html


to import all the public static members from a class. For example, if you preface a class 

definition with 

import static java.lang.System.out; 

then you can use the simple name out instead of the compound name System.out. This 

means you can say out.println instead of System.out.println. If you are going to 

work extensively with the Math class, you can preface your class definition with 

import static java.lang.Math.*; 

This would allow you to say sqrt instead of Math.sqrt, log instead of Math.log, PI 

instead of Math.PI, and so on. 

Note that the static import directive requires a package-name, even for classes in the standard 

package java.lang. One consequence of this is that you can't do a static import from a class 

in the default package. In particular, it is not possible to do a static import from my TextIO class 

-- if you want to do that, you have to move TextIO into a package. 

More on Program Design 

 

UNDERSTANDING HOW PROGRAMS WORK is one thing. Designing a program to perform 

some particular task is another thing altogether. In Section 3.2, I discussed how pseudocode and 

stepwise refinement can be used to methodically develop an algorithm. We can now see how 

subroutines can fit into the process. 

Stepwise refinement is inherently a top-down process, but the process does have a "bottom," that 

is, a point at which you stop refining the pseudocode algorithm and translate what you have 

directly into proper program code. In the absence of subroutines, the process would not bottom 

out until you get down to the level of assignment statements and very primitive input/output 

operations. But if you have subroutines lying around to perform certain useful tasks, you can 

stop refining as soon as you've managed to express your algorithm in terms of those tasks. 

This allows you to add a bottom-up element to the top-down approach of stepwise refinement. 

Given a problem, you might start by writing some subroutines that perform tasks relevant to the 

problem domain. The subroutines become a toolbox of ready-made tools that you can integrate 

into your algorithm as you develop it. (Alternatively, you might be able to buy or find a software 

toolbox written by someone else, containing subroutines that you can use in your project as black 

boxes.) 

Subroutines can also be helpful even in a strict top-down approach. As you refine your 

algorithm, you are free at any point to take any sub-task in the algorithm and make it into a 

subroutine. Developing that subroutine then becomes a separate problem, which you can work 

on separately. Your main algorithm will merely call the subroutine. This, of course, is just a way 

http://math.hws.edu/javanotes/c3/s2.html


of breaking your problem down into separate, smaller problems. It is still a top-down approach 

because the top-down analysis of the problem tells you what subroutines to write. In the bottom-

up approach, you start by writing or obtaining subroutines that are relevant to the problem 

domain, and you build your solution to the problem on top of that foundation of subroutines. 

 

4.6.1  Preconditions and Postconditions  

When working with subroutines as building blocks, it is important to be clear about how a 

subroutine interacts with the rest of the program. This interaction is specified by the contract of 

the subroutine, as discussed in Section 4.1. A convenient way to express the contract of a 

subroutine is in terms of preconditions and postconditions. 

A precondition of a subroutine is something that must be true when the subroutine is called, if 

the subroutine is to work correctly. For example, for the built-in function Math.sqrt(x), a 

precondition is that the parameter, x, is greater than or equal to zero, since it is not possible to 

take the square root of a negative number. In terms of a contract, a precondition represents an 

obligation of the caller of the subroutine. If you call a subroutine without meeting its 

precondition, then there is no reason to expect it to work properly. The program might crash or 

give incorrect results, but you can only blame yourself, not the subroutine. 

A postcondition of a subroutine represents the other side of the contract. It is something that will 

be true after the subroutine has run (assuming that its preconditions were met -- and that there are 

no bugs in the subroutine). The postcondition of the function Math.sqrt() is that the square 

of the value that is returned by this function is equal to the parameter that is provided when the 

subroutine is called. Of course, this will only be true if the precondition -- that the parameter is 

greater than or equal to zero -- is met. A postcondition of the built-in subroutine 

System.out.print(x) is that the value of the parameter has been displayed on the screen. 

Preconditions most often give restrictions on the acceptable values of parameters, as in the 

example of Math.sqrt(x). However, they can also refer to global variables that are used in 

the subroutine. Or if it only makes sense to call the subroutine at certain times, the precondition 

might refer to the state that the program must be in when the subroutine is called. 

The postcondition of a subroutine, on the other hand, specifies the task that it performs. For a 

function, the postcondition should specify the value that the function returns. 

Subroutines are sometimes described by comments that explicitly specify their preconditions and 

postconditions. When you are given a pre-written subroutine, a statement of its preconditions and 

postconditions tells you how to use it and what it does. When you are assigned to write a 

subroutine, the preconditions and postconditions give you an exact specification of what the 

subroutine is expected to do. I will use this approach in the example that constitutes the rest of 

this section. The comments are given in the form of Javadoc comments, but I will explicitly label 

the preconditions and postconditions. (Many computer scientists think that new doc tags 

http://math.hws.edu/javanotes/c4/s1.html
http://math.hws.edu/javanotes/c4/s5.html#subroutines.5.4


@precondition and @postcondition should be added to the Javadoc system for explicit 

labeling of preconditions and postconditions, but that has not yet been done.) 

 

4.6.2  A Design Example  

Let's work through an example of program design using subroutines. In this example, we will use 

pre-written subroutines as building blocks and we will also design new subroutines that we need 

to complete the project. The API that I will use here is defined in Mosaic.java, which in turns 

depends on MosaicPanel.java. To compile and run a program that uses the API, the classes 

Mosaic and MosaicPanel must be available. That is, the files Mosaic.java and 

MosaicPanel.java, or the the corresponding compiled class files, must be in the same 

folder as the class that defines the program. 

So, suppose that I have found an already-written class called Mosaic. This class allows a 

program to work with a window that displays little colored rectangles arranged in rows and 

columns. The window can be opened, closed, and otherwise manipulated with static member 

subroutines defined in the Mosaic class. In fact, the class defines a toolbox or API that can be 

used for working with such windows. Here are some of the available routines in the API, with 

Javadoc-style comments. (Remeber that a Javadoc comment comes before the thing that it is 

commenting on.) 

/** 

 * Opens a "mosaic" window on the screen. 

 * 

 * Precondition:   The parameters rows, cols, w, and h are positive 

integers. 

 * Postcondition:  A window is open on the screen that can display 

rows and 

 *                   columns of colored rectangles.  Each rectangle 

is w pixels 

 *                   wide and h pixels high.  The number of rows is 

given by 

 *                   the first parameter and the number of columns 

by the 

 *                   second.  Initially, all rectangles are black. 

 * 

 * Note:  The rows are numbered from 0 to rows - 1, and the columns 

are  

 * numbered from 0 to cols - 1. 

 */ 

public static void open(int rows, int cols, int w, int h) 

    

    

/** 

 * Sets the color of one of the rectangles in the window. 

 * 

 * Precondition:   row and col are in the valid range of row and 

column numbers, 

http://math.hws.edu/javanotes/source/chapter4/Mosaic.java
http://math.hws.edu/javanotes/source/chapter4/MosaicPanel.java


 *                   and r, g, and b are in the range 0 to 255, 

inclusive. 

 * Postcondition:  The color of the rectangle in row number row and 

column 

 *                   number col has been set to the color specified 

by r, g, 

 *                   and b.  r gives the amount of red in the color 

with 0  

 *                   representing no red and 255 representing the 

maximum  

 *                   possible amount of red.  The larger the value 

of r, the  

 *                   more red in the color.  g and b work similarly 

for the  

 *                   green and blue color components. 

 */ 

public static void setColor(int row, int col, int r, int g, int b) 

 

    

/** 

 * Gets the red component of the color of one of the rectangles. 

 * 

 * Precondition:   row and col are in the valid range of row and 

column numbers. 

 * Postcondition:  The red component of the color of the specified 

rectangle is 

 *                   returned as an integer in the range 0 to 255 

inclusive. 

 */ 

public static int getRed(int row, int col) 

 

    

/** 

 * Like getRed, but returns the green component of the color. 

 */ 

public static int getGreen(int row, int col) 

 

    

/** 

 * Like getRed, but returns the blue component of the color. 

 */ 

public static int getBlue(int row, int col) 

 

    

/** 

 * Tests whether the mosaic window is currently open. 

 * 

 * Precondition:   None. 

 * Postcondition:  The return value is true if the window is open 

when this 

 *                   function is called, and it is false if the 

window is 

 *                   closed. 

 */ 

public static boolean isOpen() 

 

    



/** 

 * Inserts a delay in the program (to regulate the speed at which 

the colors 

 * are changed, for example). 

 * 

 * Precondition:   milliseconds is a positive integer. 

 * Postcondition:  The program has paused for at least the 

specified number 

 *                   of milliseconds, where one second is equal to 

1000 

 *                   milliseconds. 

 */ 

public static void delay(int milliseconds) 

Remember that these subroutines are members of the Mosaic class, so when they are called 

from outside Mosaic, the name of the class must be included as part of the name of the routine. 

For example, we'll have to use the name Mosaic.isOpen() rather than simply isOpen(). 

You'll notice that the comments on the subroutine don't specify what happens when the 

preconditions are not met. Although a subroutine is not really obligated by its contract to do 

anything particular in that case, it would be good to know what happens. For example, if the 

precondition, "row and col are in the valid range of row and column numbers," on the 

setColor() or getRed() routine is violated, an IllegalArgumentException will be thrown. 

Knowing that fact would allow you to write programs that catch and handle the exception, and it 

would be good to document it with a @throws doc tag in the Javadoc comment. Other 

questions remain about the behavior of the subroutines. For example, what happens if you call 

Mosaic.open() and there is already a mosaic window open on the screen? (In fact, the old 

one will be closed, and a new one will be created.) It's difficult to fully document the behavior of 

a piece of software -- sometimes, you just have to experiment or look at the full source code. 

 

My idea for a program is to use the Mosaic class as the basis for a neat animation. I want to fill 

the window with randomly colored squares, and then randomly change the colors in a loop that 

continues as long as the window is open. "Randomly change the colors" could mean a lot of 

different things, but after thinking for a while, I decide it would be interesting to have a 

"disturbance" that wanders randomly around the window, changing the color of each square that 

it encounters. Here's a picture showing what the contents of the window might look like at one 

point in time: 



 

With basic routines for manipulating the window as a foundation, I can turn to the specific 

problem at hand. A basic outline for my program is 

Open a Mosaic window 

Fill window with random colors 

Move around, changing squares at random 

Filling the window with random colors seems like a nice coherent task that I can work on 

separately, so let's decide to write a separate subroutine to do it. The third step can be expanded a 

bit more, into the steps: Start in the middle of the window, then keep moving to new squares and 

changing the color of those squares. This should continue as long as the mosaic window is still 

open. Thus we can refine the algorithm to: 

Open a Mosaic window 

Fill window with random colors 

Set the current position to the middle square in the window 

As long as the mosaic window is open: 

   Randomly change color of the square at the current position 

   Move current position up, down, left, or right, at random 

I need to represent the current position in some way. That can be done with two int variables 

named currentRow and currentColumn that hold the row number and the column number 

of the square where the disturbance is currently located. I'll use 16 rows and 20 columns of 

squares in my mosaic, so setting the current position to be in the center means setting 

currentRow to 8 and currentColumn to 10. I already have a subroutine, 

Mosaic.open(), to open the window, and I have a function, Mosaic.isOpen(), to test 

whether the window is open. To keep the main routine simple, I decide that I will write two more 

subroutines of my own to carry out the two tasks in the while loop. The algorithm can then be 

written in Java as: 



Mosaic.open(16,20,25,25) 

fillWithRandomColors(); 

currentRow = 8;       // Middle row, halfway down the window. 

currentColumn = 10;   // Middle column. 

while ( Mosaic.isOpen() ) { 

    changeToRandomColor(currentRow, currentColumn); 

    randomMove();       

} 

With the proper wrapper, this is essentially the main() routine of my program. It turns out I 

have to make one small modification: To prevent the animation from running much, much too 

fast, the line "Mosaic.delay(1);" is added to the while loop. 

The main() routine is taken care of, but to complete the program, I still have to write the 

subroutines fillWithRandomColors(), changeToRandomColor(int,int), and 

randomMove(). Writing each of these subroutines is a separate, small task. The 

fillWithRandomColors() routine is defined by the postcondition that "each of the 

rectangles in the mosaic has been changed to a random color." Pseudocode for an algorithm to 

accomplish this task can be given as: 

For each row: 

   For each column: 

      set the square in that row and column to a random color 

"For each row" and "for each column" can be implemented as for loops. We've already planned 

to write a subroutine changeToRandomColor that can be used to set the color. (The 

possibility of reusing subroutines in several places is one of the big payoffs of using them!) So, 

fillWithRandomColors() can be written in proper Java as: 

static void fillWithRandomColors() { 

   for (int row = 0; row < 16; row++) 

      for (int column = 0; column < 20; column++) 

         changeToRandomColor(row,column); 

} 

Turning to the changeToRandomColor subroutine, we already have a method in the 

Mosaic class, Mosaic.setColor(), that can be used to change the color of a square. If we 

want a random color, we just have to choose random values for r, g, and b. According to the 

precondition of the Mosaic.setColor() subroutine, these random values must be integers 

in the range from 0 to 255. A formula for randomly selecting such an integer is 

"(int)(256*Math.random())". So the random color subroutine becomes: 

static void changeToRandomColor(int rowNum, int colNum) { 

     int red = (int)(256*Math.random()); 

     int green = (int)(256*Math.random());   

     int blue = (int)(256*Math.random()); 

     Mosaic.setColor(rowNum,colNum,red,green,blue);   

} 



Finally, consider the randomMove subroutine, which is supposed to randomly move the 

disturbance up, down, left, or right. To make a random choice among four directions, we can 

choose a random integer in the range 0 to 3. If the integer is 0, move in one direction; if it is 1, 

move in another direction; and so on. The position of the disturbance is given by the variables 

currentRow and currentColumn. To "move up" means to subtract 1 from currentRow. 

This leaves open the question of what to do if currentRow becomes -1, which would put the 

disturbance above the window (which would violate a precondition of several of the Mosaic 

subroutines). Rather than let this happen, I decide to move the disturbance to the opposite edge 

of the grid by setting currentRow to 15. (Remember that the 16 rows are numbered from 0 to 

15.) An alternative to jumping to the opposite edge would be to simply do nothing in this case. 

Moving the disturbance down, left, or right is handled similarly. If we use a switch statement 

to decide which direction to move, the code for randomMove becomes: 

int directionNum; 

directionNum = (int)(4*Math.random()); 

switch (directionNum) { 

   case 0:  // move up  

      currentRow--; 

      if (currentRow < 0)   // CurrentRow is outside the mosaic; 

         currentRow = 15;   // move it to the opposite edge. 

      break; 

   case 1:  // move right 

      currentColumn++; 

      if (currentColumn >= 20) 

         currentColumn = 0; 

      break;  

   case 2:  // move down 

      currentRow++; 

      if (currentRow >= 16) 

         currentRow = 0; 

      break; 

   case 3:  // move left 

      currentColumn--; 

      if (currentColumn < 0) 

         currentColumn = 19; 

      break;  

} 

 

4.6.3  The Program  

Putting this all together, we get the following complete program. Note that I've added Javadoc-

style comments for the class itself and for each of the subroutines. The variables currentRow 

and currentColumn are defined as static members of the class, rather than local variables, 

because each of them is used in several different subroutines. You can find a copy of the source 

code in RandomMosaicWalk.java. Remember that this program actually depends on two other 

files, Mosaic.java and MosaicPanel.java. 

/** 

 * This program opens a window full of randomly colored squares.  A 

"disturbance" 

http://math.hws.edu/javanotes/source/chapter4/RandomMosaicWalk.java
http://math.hws.edu/javanotes/source/chapter4/Mosaic.java
http://math.hws.edu/javanotes/source/chapter4/MosaicPanel.java


 * moves randomly around in the window, randomly changing the color 

of each 

 * square that it visits.  The program runs until the user closes 

the window. 

 */ 

public class RandomMosaicWalk { 

 

    static int currentRow;    // Row currently containing the 

disturbance. 

    static int currentColumn; // Column currently containing 

disturbance. 

 

    /** 

     * The main program creates the window, fills it with random 

colors, 

     * and then moves the disturbance in a random walk around the 

window 

     * as long as the window is open. 

     */ 

    public static void main(String[] args) { 

        Mosaic.open(16,20,25,25); 

        fillWithRandomColors(); 

        currentRow = 8;   // start at center of window 

        currentColumn = 10; 

        while (Mosaic.isOpen()) { 

            changeToRandomColor(currentRow, currentColumn); 

            randomMove(); 

            Mosaic.delay(1); 

        } 

    }  // end main 

 

    /** 

     * Fills the window with randomly colored squares. 

     * Precondition:   The mosaic window is open. 

     * Postcondition:  Each square has been set to a random color.  

     */ 

    static void fillWithRandomColors() { 

        for (int row=0; row < 16; row++) { 

            for (int column=0; column < 20; column++) { 

                changeToRandomColor(row, column);   

            } 

        } 

    }  // end fillWithRandomColors 

 

    /** 

     * Changes one square to a new randomly selected color. 

     * Precondition:   The specified rowNum and colNum are in the 

valid range 

     *                 of row and column numbers. 

     * Postcondition:  The square in the specified row and column 

has 

     *                 been set to a random color. 

     * @param rowNum the row number of the square, counting rows 

down 

     *      from 0 at the top 

     * @param colNum the column number of the square, counting 

columns over 



     *      from 0 at the left 

     */ 

    static void changeToRandomColor(int rowNum, int colNum) { 

        int red = (int)(256*Math.random());    // Choose random 

levels in range 

        int green = (int)(256*Math.random());  //     0 to 255 for 

red, green,  

        int blue = (int)(256*Math.random());   //     and blue 

color components. 

        Mosaic.setColor(rowNum,colNum,red,green,blue);   

    }  // end changeToRandomColor 

 

    /** 

     * Move the disturbance. 

     * Precondition:   The global variables currentRow and 

currentColumn 

     *                 are within the legal range of row and column 

numbers. 

     * Postcondition:  currentRow or currentColumn is changed to 

one of the 

     *                 neighboring positions in the grid -- up, 

down, left, or 

     *                 right from the current position.  If this 

moves the 

     *                 position outside of the grid, then it is 

moved to the 

     *                 opposite edge of the grid. 

     */ 

    static void randomMove() { 

        int directionNum; // Randomly set to 0, 1, 2, or 3 to 

choose direction. 

        directionNum = (int)(4*Math.random()); 

        switch (directionNum) { 

        case 0:  // move up  

            currentRow--; 

            if (currentRow < 0) 

                currentRow = 15; 

            break; 

        case 1:  // move right 

            currentColumn++; 

            if (currentColumn >= 20) 

                currentColumn = 0; 

            break;  

        case 2:  // move down 

            currentRow ++; 

            if (currentRow >= 16) 

                currentRow = 0; 

            break; 

        case 3:  // move left   

            currentColumn--; 

            if (currentColumn < 0) 

                currentColumn = 19; 

            break;  

        } 

    }  // end randomMove 

 

} // end class RandomMosaicWalk 



 

The Truth About Declarations 

 

NAMES ARE FUNDAMENTAL TO PROGRAMMING, as I said a few chapters ago. There are 

a lot of details involved in declaring and using names. I have been avoiding some of those 

details. In this section, I'll reveal most of the truth (although still not the full truth) about 

declaring and using variables in Java. The material in the subsections "Initialization in 

Declarations" and "Named Constants" is particularly important, since I will be using it regularly 

from now on. 

 

4.7.1  Initialization in Declarations  

When a variable declaration is executed, memory is allocated for the variable. This memory must 

be initialized to contain some definite value before the variable can be used in an expression. In 

the case of a local variable, the declaration is often followed closely by an assignment statement 

that does the initialization. For example, 

int count;    // Declare a variable named count. 

count = 0;    // Give count its initial value. 

However, the truth about declaration statements is that it is legal to include the initialization of 

the variable in the declaration statement. The two statements above can therefore be abbreviated 

as 

int count = 0;  // Declare count and give it an initial value. 

The computer still executes this statement in two steps: Declare the variable count, then assign 

the value 0 to the newly created variable. The initial value does not have to be a constant. It can 

be any expression. It is legal to initialize several variables in one declaration statement. For 

example, 

char firstInitial = 'D', secondInitial = 'E'; 

                 

int x, y = 1;   // OK, but only y has been initialized! 

   

int N = 3, M = N+2;  // OK, N is initialized  

                     //        before its value is used. 

This feature is especially common in for loops, since it makes it possible to declare a loop 

control variable at the same point in the loop where it is initialized. Since the loop control 

variable generally has nothing to do with the rest of the program outside the loop, it's reasonable 

to have its declaration in the part of the program where it's actually used. For example: 



for ( int i = 0;  i < 10;  i++ ) { 

   System.out.println(i); 

} 

You should remember that this is simply an abbreviation for the following, where I've added an 

extra pair of braces to show that i is considered to be local to the for statement and no longer 

exists after the for loop ends: 

{ 

   int i; 

   for ( i = 0;  i < 10;  i++ ) { 

      System.out.println(i); 

   } 

} 

A member variable can also be initialized at the point where it is declared, just as for a local 

variable. For example: 

public class Bank { 

   private static double interestRate = 0.05; 

   private static int maxWithdrawal = 200; 

     . 

     .  // More variables and subroutines. 

     . 

} 

A static member variable is created as soon as the class is loaded by the Java interpreter, and the 

initialization is also done at that time. In the case of member variables, this is not simply an 

abbreviation for a declaration followed by an assignment statement. Declaration statements are 

the only type of statement that can occur outside of a subroutine. Assignment statements cannot, 

so the following is illegal: 

public class Bank { 

   private static double interestRate; 

   interestRate = 0.05;  // ILLEGAL: 

   .                     //    Can't be outside a subroutine!: 

   . 

   . 

Because of this, declarations of member variables often include initial values. In fact, as 

mentioned in Subsection 4.2.4, if no initial value is provided for a member variable, then a 

default initial value is used. For example, when declaring an integer member variable, count, 

"static int count;" is equivalent to "static int count = 0;". 

Even array variables can be initialized. An array contains several elements, not just a single 

value. To initialize an array variable, you can provide a list of values, separated by commas, and 

enclosed between a pair of braces. For example: 

int[] smallPrimes = { 2, 3, 5, 7, 11, 13, 17, 23, 29 }; 

http://math.hws.edu/javanotes/c4/s2.html#subroutines.2.4


In this statement, an array of int of length 9 is created and filled with the values in the list. The 

length of the array is determined by the number of items in the list. 

Note that this syntax for initializing arrays cannot be used in assignment statements. It can only 

be used in a declaration statement at the time when the array variable is declared. 

It is also possible to initialize an array variable with an array created using the new operator 

(which can also be used in assignment statements). For example: 

String[] namelist = new String[100]; 

but in that case, of course, all the array elements will have their default value.  

 

4.7.2  Named Constants  

Sometimes, the value of a variable is not supposed to change after it is initialized. For example, 

in the above example where interestRate is initialized to the value 0.05, it's quite possible 

that 0.05 is meant to be the value throughout the entire program. In that case, the programmer is 

probably defining the variable, interestRate, to give a meaningful name to the otherwise 

meaningless number, 0.05. It's easier to understand what's going on when a program says 

"principal += principal*interestRate;" rather than "principal += 

principal*0.05;". 

In Java, the modifier "final" can be applied to a variable declaration to ensure that the value 

stored in the variable cannot be changed after the variable has been initialized. For example, if 

the member variable interestRate is declared with 

public final static double interestRate = 0.05; 

then it would be impossible for the value of interestRate to change anywhere else in the 

program. Any assignment statement that tries to assign a value to interestRate will be 

rejected by the computer as a syntax error when the program is compiled. (A "final" modifier on 

a public interest rate makes a lot of sense -- a bank might want to publish its interest rate, but it 

certainly wouldn't want to let random people make changes to it!) 

It is legal to apply the final modifier to local variables and even to formal parameters, but it is 

most useful for member variables. I will often refer to a static member variable that is declared to 

be final as a named constant, since its value remains constant for the whole time that the 

program is running. The readability of a program can be greatly enhanced by using named 

constants to give meaningful names to important quantities in the program. A recommended 

style rule for named constants is to give them names that consist entirely of upper case letters, 

with underscore characters to separate words if necessary. For example, the preferred style for 

the interest rate constant would be 



public final static double INTEREST_RATE = 0.05; 

This is the style that is generally used in Java's standard classes, which define many named 

constants. For example, we have already seen that the Math class contains a variable Math.PI. 

This variable is declared in the Math class as a "public final static" variable of type double. 

Similarly, the Color class contains named constants such as Color.RED and 

Color.YELLOW which are public final static variables of type Color. Many named constants 

are created just to give meaningful names to be used as parameters in subroutine calls. For 

example, the standard class named Font contains named constants Font.PLAIN, 

Font.BOLD, and Font.ITALIC. These constants are used for specifying different styles of 

text when calling various subroutines in the Font class. 

Enumerated type constants (see Subsection 2.3.3) are also examples of named constants. The 

enumerated type definition 

enum Alignment { LEFT, RIGHT, CENTER } 

defines the constants Alignment.LEFT, Alignment.RIGHT, and Alignment.CENTER. 

Technically, Alignment is a class, and the three constants are public final static members of that 

class. Defining the enumerated type is similar to defining three constants of type, say, int:  

public static final int ALIGNMENT_LEFT = 0; 

public static final int ALIGNMNENT_RIGHT = 1; 

public static final int ALIGNMENT_CENTER = 2; 

In fact, this is how things were generally done before the introduction of enumerated types, and it 

is what is done with the constants Font.PLAIN, Font.BOLD, and Font.ITALIC mentioned 

above. Using the integer constants, you could define a variable of type int and assign it the 

values ALIGNMENT_LEFT, ALIGNMENT_RIGHT, or ALIGNMENT_CENTER to represent 

different types of alignment. The only problem with this is that the computer has no way of 

knowing that you intend the value of the variable to represent an alignment, and it will not raise 

any objection if the value that is assigned to the variable is not one of the three valid alignment 

values. With the enumerated type, on the other hand, the only values that can be assigned to a 

variable of type Alignment are the constant values that are listed in the definition of the 

enumerated type. Any attempt to assign an invalid value to the variable is a syntax error which 

the computer will detect when the program is compiled. This extra safety is one of the major 

advantages of enumerated types. 

 

Curiously enough, one of the major reasons to use named constants is that it's easy to change the 

value of a named constant. Of course, the value can't change while the program is running. But 

between runs of the program, it's easy to change the value in the source code and recompile the 

program. Consider the interest rate example. It's quite possible that the value of the interest rate 

is used many times throughout the program. Suppose that the bank changes the interest rate and 

the program has to be modified. If the literal number 0.05 were used throughout the program, the 

http://math.hws.edu/javanotes/c2/s3.html#basics.3.3


programmer would have to track down each place where the interest rate is used in the program 

and change the rate to the new value. (This is made even harder by the fact that the number 0.05 

might occur in the program with other meanings besides the interest rate, as well as by the fact 

that someone might have, say, used 0.025 to represent half the interest rate.) On the other hand, if 

the named constant INTEREST_RATE is declared and used consistently throughout the 

program, then only the single line where the constant is initialized needs to be changed. 

As an extended example, I will give a new version of the RandomMosaicWalk program from 

the previous section. This version uses named constants to represent the number of rows in the 

mosaic, the number of columns, and the size of each little square. The three constants are 

declared as final static member variables with the lines: 

final static int ROWS = 20;        // Number of rows in mosaic. 

final static int COLUMNS = 30;     // Number of columns in mosaic. 

final static int SQUARE_SIZE = 15; // Size of each square in 

mosaic. 

The rest of the program is carefully modified to use the named constants. For example, in the 

new version of the program, the Mosaic window is opened with the statement 

Mosaic.open(ROWS, COLUMNS, SQUARE_SIZE, SQUARE_SIZE); 

Sometimes, it's not easy to find all the places where a named constant needs to be used. If you 

don't use the named constant consistently, you've more or less defeated the purpose. It's always a 

good idea to run a program using several different values for any named constant, to test that it 

works properly in all cases. 

Here is the complete new program, RandomMosaicWalk2, with all modifications from the 

previous version shown in red. I've left out some of the comments to save space.  

public class RandomMosaicWalk2 { 

 

    final static int ROWS = 20;        // Number of rows in mosaic. 

    final static int COLUMNS = 30;     // Number of columns in 

mosaic. 

    final static int SQUARE_SIZE = 15; // Size of each square in 

mosaic. 

 

    static int currentRow;    // Row currently containing the 

disturbance. 

    static int currentColumn; // Column currently containing the 

disturbance. 

  

    public static void main(String[] args) { 

        Mosaic.open( ROWS, COLUMNS, SQUARE_SIZE, SQUARE_SIZE ); 

        fillWithRandomColors(); 

        currentRow = ROWS / 2;   // start at center of window 

        currentColumn = COLUMNS / 2; 

        while (Mosaic.isOpen()) { 

            changeToRandomColor(currentRow, currentColumn); 

            randomMove(); 

http://math.hws.edu/javanotes/c4/s6.html


            Mosaic.delay(1); 

        } 

    }  // end main 

 

    static void fillWithRandomColors() { 

         for (int row=0; row < ROWS; row++) { 

            for (int column=0; column < COLUMNS; column++) { 

                changeToRandomColor(row, column);   

            } 

         } 

    }  // end fillWithRandomColors 

  

    static void changeToRandomColor(int rowNum, int colNum) { 

         int red = (int)(256*Math.random());    // Choose random 

levels in range 

         int green = (int)(256*Math.random());  //     0 to 255 for 

red, green,  

         int blue = (int)(256*Math.random());   //     and blue 

color components. 

         Mosaic.setColor(rowNum,colNum,red,green,blue);   

     }  // end changeToRandomColor 

  

     static void randomMove() { 

         int directionNum; // Randomly set to 0, 1, 2, or 3 to 

choose direction. 

         directionNum = (int)(4*Math.random()); 

         switch (directionNum) { 

            case 0:  // move up  

               currentRow--; 

               if (currentRow < 0) 

                  currentRow = ROWS - 1; 

               break; 

            case 1:  // move right 

               currentColumn++; 

               if (currentColumn >= COLUMNS) 

                  currentColumn = 0; 

               break;  

            case 2:  // move down 

               currentRow++; 

               if (currentRow >= ROWS) 

                  currentRow = 0; 

               break; 

            case 3:  // move left   

               currentColumn--; 

               if (currentColumn < 0) 

                  currentColumn = COLUMNS - 1; 

               break;  

         } 

     }  // end randomMove 

  

} // end class RandomMosaicWalk2 

 



4.7.3  Naming and Scope Rules  

When a variable declaration is executed, memory is allocated for that variable. The variable 

name can be used in at least some part of the program source code to refer to that memory or to 

the data that is stored in the memory. The portion of the program source code where the variable 

is valid is called the scope of the variable. Similarly, we can refer to the scope of subroutine 

names and formal parameter names. 

For static member subroutines, scope is straightforward. The scope of a static subroutine is the 

entire source code of the class in which it is defined. That is, it is possible to call the subroutine 

from any point in the class, including at a point in the source code before the point where the 

definition of the subroutine appears. It is even possible to call a subroutine from within itself. 

This is an example of something called "recursion," a fairly advanced topic that we will return to 

in Chapter 9. If the subroutine is not private, it can also be accessed from outside the class 

where it is defined, using its full name. 

For a variable that is declared as a static member variable in a class, the situation is similar, but 

with one complication. It is legal to have a local variable or a formal parameter that has the same 

name as a member variable. In that case, within the scope of the local variable or parameter, the 

member variable is hidden. Consider, for example, a class named Game that has the form: 

public class Game { 

 

    static int count;  // member variable 

  

    static void playGame() { 

        int count;  // local variable 

          . 

          .   // Some statements to define playGame() 

          . 

    } 

     

    . 

    .   // More variables and subroutines. 

    . 

  

}  // end Game 

In the statements that make up the body of the playGame() subroutine, the name "count" 

refers to the local variable. In the rest of the Game class, "count" refers to the member variable 

(unless hidden by other local variables or parameters named count). However, the member 

variable named count can also be referred to by the full name Game.count. Usually, the full 

name is only used outside the class where count is defined. However, there is no rule against 

using it inside the class. The full name, Game.count, can be used inside the playGame() 

subroutine to refer to the member variable instead of the local variable. So, the full scope rule is 

that the scope of a static member variable includes the entire class in which it is defined, but 

where the simple name of the member variable is hidden by a local variable or formal parameter 

name, the member variable must be referred to by its full name of the form 

http://math.hws.edu/javanotes/c9/index.html


className.variableName. (Scope rules for non-static members are similar to those for static 

members, except that, as we shall see, non-static members cannot be used in static subroutines.) 

The scope of a formal parameter of a subroutine is the block that makes up the body of the 

subroutine. The scope of a local variable extends from the declaration statement that defines the 

variable to the end of the block in which the declaration occurs. As noted above, it is possible to 

declare a loop control variable of a for loop in the for statement, as in "for (int i=0; i 

< 10; i++)". The scope of such a declaration is considered as a special case: It is valid only 

within the for statement and does not extend to the remainder of the block that contains the 

for statement. 

It is not legal to redefine the name of a formal parameter or local variable within its scope, even 

in a nested block. For example, this is not allowed: 

void  badSub(int y) { 

    int x; 

    while (y > 0) { 

       int x;  // ERROR:  x is already defined. 

         . 

         . 

         . 

    } 

 } 

In many languages, this would be legal; the declaration of x in the while loop would hide the 

original declaration. It is not legal in Java; however, once the block in which a variable is 

declared ends, its name does become available for reuse in Java. For example: 

void goodSub(int y) { 

   while (y > 10) { 

      int x; 

        . 

        . 

        . 

      // The scope of x ends here. 

   } 

   while (y > 0) { 

      int x;  // OK: Previous declaration of x has expired. 

       . 

       . 

       . 

   } 

} 

You might wonder whether local variable names can hide subroutine names. This can't happen, 

for a reason that might be surprising. There is no rule that variables and subroutines have to have 

different names. The computer can always tell whether a name refers to a variable or to a 

subroutine, because a subroutine name is always followed by a left parenthesis. It's perfectly 

legal to have a variable called count and a subroutine called count in the same class. (This is 

one reason why I often write subroutine names with parentheses, as when I talk about the 



main() routine. It's a good idea to think of the parentheses as part of the name.) Even more is 

true: It's legal to reuse class names to name variables and subroutines. The syntax rules of Java 

guarantee that the computer can always tell when a name is being used as a class name. A class 

name is a type, and so it can be used to declare variables and formal parameters and to specify 

the return type of a function. This means that you could legally have a class called Insanity in 

which you declare a function 

static  Insanity  Insanity( Insanity Insanity ) { ... } 

The first Insanity is the return type of the function. The second is the function name, the third 

is the type of the formal parameter, and the fourth is the name of the formal parameter. However, 

please remember that not everything that is possible is a good idea! 

 


